Recent content by empdee4

  1. E

    Graduate Can Einstein Tensor be the Product of Two 4-Vectors?

    Thanks for clarification. Does it mean Einstein equation in this very special case can be reduced to a vector equation, as follows: G = 8πGT T(E,p) = (E,p)×(E,p)/[V (E2 – p2 )½ ] G(T,X) = (T,X)×(T,X)/[V (T2 – X2 )½ ] Thus, Einstein equation becomes (T,X)x(T,X)/[V(T–X2)1/2]...
  2. E

    Graduate Can Einstein Tensor be the Product of Two 4-Vectors?

    Thanks very much for explanation. Just not clear what T / 8π means.
  3. E

    Graduate Can Einstein Tensor be the Product of Two 4-Vectors?

    In Gravitation by Misner, Thorne and Wheeler (p.139), stress-energy tensor for a single type of particles with uniform mass m and uniform momentum p (and E = p2 +m2) ½ ) can be written as a product of two 4-vectors,T(E,p) = (E,p)×(E,p)/[V(E2 – p2 )½ ] Since Einstein equation is G = 8πGT, I am...
  4. E

    Graduate Non-Linear Theory: Summation Meaningful in Einstein Gravitation?

    But if one side of the equation is linear and the other side is non-linear, how can the two sides be equal?
  5. E

    Graduate Non-Linear Theory: Summation Meaningful in Einstein Gravitation?

    Thanks very much. In MTW book, the stress-energy tensor of each category of particles is written as a vector product. Does it mean this also can happen in an infinitesimal region only? That is, in a finite region, it cannot be written as vector product
  6. E

    Graduate Non-Linear Theory: Summation Meaningful in Einstein Gravitation?

    In the famous book, Gravitation, by Misner, Thorne and Wheeler, it talks about the stress-energy tensor of a swarm of particles (p.138). The total stress-energy is summed up from all categories of particles. Is summation meaningful in the non-linear theory of Einstein gravitation? Thanks.
  7. E

    Undergrad Are these descriptions about extra dimensions really true?

    Despite popularity and verification of certain particle models, one critical question is where the UN-observed micro dimensions are. In this regard, it is meaningful to point out that symmetry doesn’t need to be from rotations among linear axes, but can be among 2d planes. While this is not...
  8. E

    High School Understanding the Stress-Energy Tensor & Solar Mass in General Relativity

    More questions. I understand when none of the masses is small and negligible, they both contribute to the stress-energy. There is no difference between gravitating and gravitated masses, they are both gravitating. My question is: Can the Einstein equation with such a stress-energy be reduced to...
  9. E

    High School Understanding the Stress-Energy Tensor & Solar Mass in General Relativity

    Assume two bodies of masses m and x•m are interacting with each other. In Newtonian gravitation, the force between two bodies are the same no matter which is considered gravitating or gravitated. That is, whether mgravitating = m and mgravitated = x•m , or mgravitating = x•m and mgravitated = m...
  10. E

    High School Understanding the Stress-Energy Tensor & Solar Mass in General Relativity

    In the test of General Relativity by perihelion motion of mercury, the stress-energy tensor is set to 0 in Schwarzschild solution. Then, is the curvature caused by solar mass, or by the 0 stress-energy? Or, do we consider solar mass as the gravitating mass? Or the 0 stress-energy the gravitating...