Ok, so any real number can be represented as a cut (say ##\alpha##), which is a subset of ##\mathbb{Q}## with the following three properties
(I) ##\alpha \ne \varnothing##, and ##\alpha \ne \mathbb{Q}##
(II) If ##p \in \alpha##, ##q \in \mathbb{Q}##, and ##q < p##, then ##q \in \alpha##
(III)...