Recent content by luckreez
-
L
Modeling the Driven Damped Oscillations in a Material
OK, so then ##E=E_0e^{i\omega t}##. Let the solution ##x_p=Ce^{i\omega t}##, then substitute to the diff. equation I get, $$ C\left(\omega_0^2+i\gamma\omega-\omega^2\right)=\frac{qE_0}{\mu} $$ or $$ C= \frac{qE_0}{\mu\left(\omega_0^2+i\gamma\omega-\omega^2\right)} $$, which is the amplitude that...- luckreez
- Post #7
- Forum: Introductory Physics Homework Help
-
L
Modeling the Driven Damped Oscillations in a Material
Thank you, I see my mistake, so here's my new answer. So I try to write E as, ##E=E_0e^{i\omega_0t}##, and assume the particular solution have this form ##x_p=Ce^{i\omega_0t}##. By putting it into the differential equation, I get $$ C=\frac{qE_0}{i\omega_0\mu} $$ which is the amplitude of the...- luckreez
- Post #5
- Forum: Introductory Physics Homework Help
-
L
Modeling the Driven Damped Oscillations in a Material
Ah, sorry, thank you for pointing out. But it doesn't change the answer to the particular solution, does it? Since the driving force is still not a function of x.- luckreez
- Post #3
- Forum: Introductory Physics Homework Help
-
L
Modeling the Driven Damped Oscillations in a Material
Homework Statement [/B] Let us assume that neutral atoms or molecules can be modeled as harmonic oscillators in some cases. Then, the equation of the displacement between nucleus and electron cloud can be written as $$\mu\left(\frac{d^x}{dt^2}+\gamma\frac{dx}{dt}+\omega_0^2x\right)=qE.$$ where...- luckreez
- Thread
- Current density Damped Damped harmonic oscillator Dielectric constant Material Modeling Oscillations
- Replies: 7
- Forum: Introductory Physics Homework Help