Recent content by Mona1990
-
M
Finding the Probability distribution function given Moment Generating Function
is it: f(x) = 2/10 if x is even , and x/10 if x is odd? thanks for all your help!- Mona1990
- Post #7
- Forum: Calculus and Beyond Homework Help
-
M
Finding the Probability distribution function given Moment Generating Function
sorry I don't get it , what line?- Mona1990
- Post #5
- Forum: Calculus and Beyond Homework Help
-
M
Finding the Probability distribution function given Moment Generating Function
hi, so from matching i get P (X = 0 ) = 2/10, P (X=1) = 1/10...P(X=4) = 2/10 but i don't get how to find the probability function knowing these values.- Mona1990
- Post #3
- Forum: Calculus and Beyond Homework Help
-
M
Finding the Probability distribution function given Moment Generating Function
Hi everyone, So I am taking a statistics course and finding this concept kinda challenging. wondering if someone can help me with the following problem! Suppose X is a discrete random variable with moment generating function M(t) = 2/10 + 1/10e^t + 2/10e^(2t) + 3/10e^(3t) + 2/10e^(4t)...- Mona1990
- Thread
- Distribution Distribution function Function Moment Probability Probability distribution
- Replies: 7
- Forum: Calculus and Beyond Homework Help
-
M
Critical Points - Multivariable Calc
Alright! thanks a lot :D- Mona1990
- Post #3
- Forum: Calculus and Beyond Homework Help
-
M
Critical Points - Multivariable Calc
Hi, i was wondering if someone could please help to find and classify the critical points of : f(x,y) = (x-y)^2 What i know: I got fx = 2(x-y) and fy = -2(x-y) and in order to find the critical points we need to solve: 2(x-y) =0 -2(x-y) = 0 so if x =y then the above hold. where...- Mona1990
- Thread
- Critical points Multivariable Points
- Replies: 2
- Forum: Calculus and Beyond Homework Help
-
M
Determining Inner Product for P2: Non-Negativity, Symmetry & Linearity
Hi, I was wondering how would i determine if <p,q> = p(0)q(0)+ p(1)q(1) is an inner product for P2. I know, we have to check for non-negativity, symmetry and linearity. Just not sure how. thanks!- Mona1990
- Thread
- Inner product Linearity Product Symmetry
- Replies: 1
- Forum: Calculus and Beyond Homework Help
-
M
Proof of Calculus III: Proving Limit as (x,y) -> (0,0) = 0
Hey! thanks a lot :) makes sense now!- Mona1990
- Post #3
- Forum: Calculus and Beyond Homework Help
-
M
Proof of Calculus III: Proving Limit as (x,y) -> (0,0) = 0
Hi! I was wondering if someone could give me a couple hints on how to tackle the following proof! Let f(x,y)= [ (lxl ^a)(lyl^b) ]/ [(lxl^c) + lyl^d] where a,b,c,d are positive numbers. prove that if (a/c) + (b/d) > 1 then limit as (x,y) -> (0,0) of f(x,y) exists and equals zero. thanks!- Mona1990
- Thread
- Calculus Calculus iii Proof
- Replies: 2
- Forum: Calculus and Beyond Homework Help
-
M
What is the relationship between invertible linear mappings and rank in proofs?
the dimension of the column space of M is the rank of M and we know that dim (null M)= 0 since the null space of M is just the zero vector and since rank = m - (dimension of the null space of M) so rank is m?- Mona1990
- Post #3
- Forum: Calculus and Beyond Homework Help
-
M
What is the relationship between invertible linear mappings and rank in proofs?
1. Hi! I was wondering if anyone could help me to solve the following problem! Let L : [R][n] ->[R][m] and M :[R][m]-> [R][m] be linear mappings. Prove that if M is invertible, then rank (M o L) = rank (L) thanks! :)- Mona1990
- Thread
- Linear Proofs
- Replies: 2
- Forum: Calculus and Beyond Homework Help