Using Linear Algebra to solve systems of non-linear equations

Click For Summary
The discussion centers on using linear algebra to solve systems of non-linear equations by substituting non-linear functions with variables. The initial claim is that if a solution exists, these equations can be transformed into linear equations, allowing for the use of linear algebra techniques. However, participants challenge this approach, arguing that linear algebra does not directly solve for the original variables x and y, but rather for the substituted variables u and v. The conversation highlights the limitations of applying linear algebra to more complex non-linear equations and suggests that while simplification is possible, it may not always lead to practical solutions. Ultimately, the discourse emphasizes the need for careful consideration of the types of equations being addressed.
Edwin
Messages
159
Reaction score
0
I did some number crunching and found the following:

Given n equations in n unknowns:

a*f(x) + b*g(y) = c
d*f(x) + e*g(y) = f

If there is a solution to these equations, you can use substitution to transform these equations into a set of linear equations and solve using linear algebra.

Let f(x) = u and g(y) = v

Then

a*f(x) + b*g(y) = c
d*f(x) + e*g(y) = f

which becomes

a*u + b*v = c
d*u + e*v = f

Which can be solved for u and v using linear algebra.

x and y can then be solved for by solving the corresponding equations

u = f(x), and v = g(y) thus making it possible to solve systems of non-linear equations of the form above using linear algebra.

Any thoughts?

Edwin G. Schasteen
 
Physics news on Phys.org
You aren't using Linear Algebra to solve for x and y.

Linear Algebra can solve for a,b,d, and e if a solution exists. It doesn't do anything regarding x and y.

You can not solve u and v through that at all.

Let f(x) = x^10 + x^9 + x + 1 = u, and g(y) = y^11 + y^10 + y + 1 = v.

According to you, we can solve for u and v.

a*u + b*v = c
d*u + e*v = f

...then for x and y.

Using my simple polynomials, solve for x and y, which you said you can do. To make it easier, let a=1, b=0, and c=0.

a*u + b*v = c
u + 0 = 0
f(x) = 0
x^10 + x^9 + x + 1 = 0

Hmmm... this isn't helping much.

How does Linear Algebra solve that?
 
Last edited:
Edwin said:
I did some number crunching and found the following:
Given n equations in n unknowns:
a*f(x) + b*g(y) = c
d*f(x) + e*g(y) = f
If there is a solution to these equations, you can use substitution to transform these equations into a set of linear equations and solve using linear algebra.
Let f(x) = u and g(y) = v
Then
a*f(x) + b*g(y) = c
d*f(x) + e*g(y) = f
which becomes
a*u + b*v = c
d*u + e*v = f
Which can be solved for u and v using linear algebra.
x and y can then be solved for by solving the corresponding equations
u = f(x), and v = g(y) thus making it possible to solve systems of non-linear equations of the form above using linear algebra.
Any thoughts?
Edwin G. Schasteen

What you are saying is certainly true but I don't see anything new. If I had, for example, the two equations
x2+ y2= 1 and
x2- y2= 1 then I would add the two equations to get 2x2= 2 so x= 1 or -1. Putting that back into either equation I would have 1+ y2= 1 or 1- y2= 1 both of which give y2= 0 or y= 0. The two solutions to the system of equations are x= 1, y= 0 and x= -1, y= 0.

Of course, you are assuming that you have n LINEAR equations in n functions of single variables. Most "non-linear" equations are more complicated than that: for example x2- 2xy+ y2= 1 and x2+ ey= 1 or sin(x)+ cos(x)= 1.
 
Maybe I misread your question.

Is u and v constants?
 
Linear Algebra can solve for a,b,d, and e if a solution exists. It doesn't do anything regarding x and y.

You can not solve u and v through that at all.
Let me try explaining it a different way:

Suppose the system of equations

au + bv = c
du + ev = f

has a unique solution (u,v) = (m,n). (As is typical with 2 equations and 2 unknowns)


Then, if you were asked to solve the system of equations

a*f(x) + b*g(y) = c
d*f(x) + e*g(y) = f

for x and y.

The previous work allows you to immediately reduce this problem to solving

f(x) = m
g(y) = n
 
Hurkyl said:
Let me try explaining it a different way:
Suppose the system of equations
au + bv = c
du + ev = f
has a unique solution (u,v) = (m,n). (As is typical with 2 equations and 2 unknowns)
Then, if you were asked to solve the system of equations
a*f(x) + b*g(y) = c
d*f(x) + e*g(y) = f
for x and y.
The previous work allows you to immediately reduce this problem to solving
f(x) = m
g(y) = n

Yes, but that doesn't really help at all.
 
Really? I think solving

x^10 + x^9 + x + 1 = 7
y^11 + y^10 + y + 1 = 3

looks much much easier than trying to solve

5y^11 + 3x^10 + 5y^10 + 3x^9 + 3x + 5y + 8 = 36
y^11 - x^10 + y^10 - x^9 - x + y = -4

Don't you?


And how else were you planning on solving the equation

cos t + 3 sin s = 2
4 cos t - 2 sin s = -1

?
 
Thanks for your input guys!


Hurkyl, I hadn't thought of using this to solve systems of transcendental equations. That's an interesting thought!

Your thoughts regarding simplification of the systems of algebraic equations of the same form into more managable equations of a single variable were exactly what I was aiming at. Given a system of non-linear equations of the form below, you can reduce the equations to a system of non-linear equations of a single variable for each of the variables just as you've shown below. One can then use any variety of numerical methods to approximate sollutions to the given equations.

What do you think?

Inquisitively,

Edwin
 
It's what I would expect to be taught in any intermediate algebra course.
The crucial point is that "non-linear equations of the form below" are not general non-linear equations. Your form is restricted to "linear equations of non-linear functions of a single variable". Obviously one can use linear equation methods to reduce to separate non-linear equations.
 
  • #10
That's correct.

Best Regards,

Edwin
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
604
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K