Using Linear Algebra to solve systems of non-linear equations

Click For Summary
SUMMARY

This discussion focuses on the application of linear algebra to solve systems of non-linear equations, specifically transforming equations of the form a*f(x) + b*g(y) = c and d*f(x) + e*g(y) = f into linear equations. Participants debate the validity of using linear algebra to derive solutions for variables x and y from transformed variables u and v. Edwin G. Schasteen argues that while linear algebra can solve for coefficients a, b, d, and e, it does not directly solve for x and y. The conversation highlights the limitations of linear algebra in addressing more complex non-linear equations.

PREREQUISITES
  • Understanding of linear algebra concepts, particularly systems of equations.
  • Familiarity with non-linear functions and their properties.
  • Knowledge of substitution methods in algebra.
  • Basic skills in numerical methods for approximating solutions.
NEXT STEPS
  • Explore numerical methods for solving non-linear equations, such as Newton-Raphson or bisection methods.
  • Study the implications of using linear algebra in higher-dimensional systems.
  • Investigate the limitations of linear algebra in solving transcendental equations.
  • Learn about software tools like MATLAB or Python libraries (e.g., NumPy) for numerical analysis of equations.
USEFUL FOR

Mathematicians, engineers, and students studying algebra who are interested in solving complex systems of equations, particularly those involving non-linear functions.

Edwin
Messages
159
Reaction score
0
I did some number crunching and found the following:

Given n equations in n unknowns:

a*f(x) + b*g(y) = c
d*f(x) + e*g(y) = f

If there is a solution to these equations, you can use substitution to transform these equations into a set of linear equations and solve using linear algebra.

Let f(x) = u and g(y) = v

Then

a*f(x) + b*g(y) = c
d*f(x) + e*g(y) = f

which becomes

a*u + b*v = c
d*u + e*v = f

Which can be solved for u and v using linear algebra.

x and y can then be solved for by solving the corresponding equations

u = f(x), and v = g(y) thus making it possible to solve systems of non-linear equations of the form above using linear algebra.

Any thoughts?

Edwin G. Schasteen
 
Physics news on Phys.org
You aren't using Linear Algebra to solve for x and y.

Linear Algebra can solve for a,b,d, and e if a solution exists. It doesn't do anything regarding x and y.

You can not solve u and v through that at all.

Let f(x) = x^10 + x^9 + x + 1 = u, and g(y) = y^11 + y^10 + y + 1 = v.

According to you, we can solve for u and v.

a*u + b*v = c
d*u + e*v = f

...then for x and y.

Using my simple polynomials, solve for x and y, which you said you can do. To make it easier, let a=1, b=0, and c=0.

a*u + b*v = c
u + 0 = 0
f(x) = 0
x^10 + x^9 + x + 1 = 0

Hmmm... this isn't helping much.

How does Linear Algebra solve that?
 
Last edited:
Edwin said:
I did some number crunching and found the following:
Given n equations in n unknowns:
a*f(x) + b*g(y) = c
d*f(x) + e*g(y) = f
If there is a solution to these equations, you can use substitution to transform these equations into a set of linear equations and solve using linear algebra.
Let f(x) = u and g(y) = v
Then
a*f(x) + b*g(y) = c
d*f(x) + e*g(y) = f
which becomes
a*u + b*v = c
d*u + e*v = f
Which can be solved for u and v using linear algebra.
x and y can then be solved for by solving the corresponding equations
u = f(x), and v = g(y) thus making it possible to solve systems of non-linear equations of the form above using linear algebra.
Any thoughts?
Edwin G. Schasteen

What you are saying is certainly true but I don't see anything new. If I had, for example, the two equations
x2+ y2= 1 and
x2- y2= 1 then I would add the two equations to get 2x2= 2 so x= 1 or -1. Putting that back into either equation I would have 1+ y2= 1 or 1- y2= 1 both of which give y2= 0 or y= 0. The two solutions to the system of equations are x= 1, y= 0 and x= -1, y= 0.

Of course, you are assuming that you have n LINEAR equations in n functions of single variables. Most "non-linear" equations are more complicated than that: for example x2- 2xy+ y2= 1 and x2+ ey= 1 or sin(x)+ cos(x)= 1.
 
Maybe I misread your question.

Is u and v constants?
 
Linear Algebra can solve for a,b,d, and e if a solution exists. It doesn't do anything regarding x and y.

You can not solve u and v through that at all.
Let me try explaining it a different way:

Suppose the system of equations

au + bv = c
du + ev = f

has a unique solution (u,v) = (m,n). (As is typical with 2 equations and 2 unknowns)


Then, if you were asked to solve the system of equations

a*f(x) + b*g(y) = c
d*f(x) + e*g(y) = f

for x and y.

The previous work allows you to immediately reduce this problem to solving

f(x) = m
g(y) = n
 
Hurkyl said:
Let me try explaining it a different way:
Suppose the system of equations
au + bv = c
du + ev = f
has a unique solution (u,v) = (m,n). (As is typical with 2 equations and 2 unknowns)
Then, if you were asked to solve the system of equations
a*f(x) + b*g(y) = c
d*f(x) + e*g(y) = f
for x and y.
The previous work allows you to immediately reduce this problem to solving
f(x) = m
g(y) = n

Yes, but that doesn't really help at all.
 
Really? I think solving

x^10 + x^9 + x + 1 = 7
y^11 + y^10 + y + 1 = 3

looks much much easier than trying to solve

5y^11 + 3x^10 + 5y^10 + 3x^9 + 3x + 5y + 8 = 36
y^11 - x^10 + y^10 - x^9 - x + y = -4

Don't you?


And how else were you planning on solving the equation

cos t + 3 sin s = 2
4 cos t - 2 sin s = -1

?
 
Thanks for your input guys!


Hurkyl, I hadn't thought of using this to solve systems of transcendental equations. That's an interesting thought!

Your thoughts regarding simplification of the systems of algebraic equations of the same form into more managable equations of a single variable were exactly what I was aiming at. Given a system of non-linear equations of the form below, you can reduce the equations to a system of non-linear equations of a single variable for each of the variables just as you've shown below. One can then use any variety of numerical methods to approximate sollutions to the given equations.

What do you think?

Inquisitively,

Edwin
 
It's what I would expect to be taught in any intermediate algebra course.
The crucial point is that "non-linear equations of the form below" are not general non-linear equations. Your form is restricted to "linear equations of non-linear functions of a single variable". Obviously one can use linear equation methods to reduce to separate non-linear equations.
 
  • #10
That's correct.

Best Regards,

Edwin
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
930
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K