Neutrino Oscillations: Massiveness & Non-Oscillation of Electrons, Muons & Taus

Click For Summary
Neutrino oscillations demonstrate the massiveness of neutrinos, while electrons, muons, and taus do not exhibit similar oscillations due to their classification as mass eigenstates rather than flavor eigenstates. The Standard Model of particle physics does not provide definitive answers to why neutrinos oscillate, leaving many questions open. The mixing of lepton flavors can be attributed to the weak force, which operates differently for neutrinos compared to charged leptons. Experiments typically detect neutrinos through associated charged leptons, complicating the observation of oscillations in the latter. Ultimately, while charged leptons could theoretically oscillate under certain conditions, the current framework and experimental setups focus on neutrino oscillations.
touqra
Messages
284
Reaction score
0
Why do only neutrino oscillates (showing massiveness of neutrino)? Why don't electron, muon and tau oscillates?
 
Physics news on Phys.org
touqra said:
Why do only neutrino oscillates (showing massiveness of neutrino)? Why don't electron, muon and tau oscillates?

Your question (why) is in a way unanswerable. The Standard Model describes particle physics, etc. as it is. Why the speed of light has its value and why the unit charge is what it is are other examples which cannot be answered. Possibly string theory will supply answers, but we are left with many open questions now.
 
As I recall, electron / muon / tau oscillations are superfluous, because they can be eliminated by redefining new electron, muon and tau flavor basis states as linear combinations of the old ones.

Or to put it another way (I think), you can put the lepton mixing completely in the neutrinos, or completely in the massive leptons, or distributed among the two sets of leptons, by defining the flavor basis states correspondingly.
 
jtbell said:
As I recall, electron / muon / tau oscillations are superfluous, because they can be eliminated by redefining new electron, muon and tau flavor basis states as linear combinations of the old ones.

Or to put it another way (I think), you can put the lepton mixing completely in the neutrinos, or completely in the massive leptons, or distributed among the two sets of leptons, by defining the flavor basis states correspondingly.

In that case, I don't understand. If they could put the mixing completely in the massive leptons, why then are we only searching for neutrino oscillation?
 
experimentally, you can't actually see the neutrinos themselve. what you call an electron neutrino is the result of detecting "an electron" at the detector. say, you collide particles at one end and through weak interactions a neutrino is produced, during that production an associated charged lepton with the "right" flavor is also produced. this neutrino is allowed to travel down to the other end and weak interacts again...and if the *associated* charge lepton at the detector end is different from the original one at the intial end, then we say we have observed neutrino oscillations.
 
touqra said:
Why do only neutrino oscillates (showing massiveness of neutrino)? Why don't electron, muon and tau oscillates?

This is a wonderful question and shows that you are paying close attention to what you read, and not believing everything.

A neutron decays into three things, a proton, an electron, and an anti "neutrino". The usual description of this neutrino is an "electron anti neutrino" because it is emitted along with an electron. But this language is confusing to the student. The "electron neutrino" is a "flavor eigenstate" of the three neutrinos that are the "mass eigenstates".

A "mass eigenstate" means a particle state that has a definite mass. The electron, muon, and tau are mass eigenstates. The electron neutrino, the muon neutrino, and the tau neutrino are not mass eigenstates. The mass eigenstates of the neutrino are usually called \nu_1, \nu_2, \nu_3, and this is a better way of describing neutrinos.

A "flavor eigenstate" means a particle state that is an eigenstate of the weak force. The weak force mixes mass eigenstates of the three generations. As jtbell said, the way we talk about these is a little arbitrary. The way we treat the flavor eigenstates is to have the electron, muon and tau be flavor eigenstates, along with the mixtures of the three mass eigenstate neutrinos.

If we wanted to, we could modify the flavor eigenstate description so that \nu_1, \nu_2, \nu_3 were, call them "navor" eigenstates, and the electron, muon, and tau were not. We don't do it this way for two reasons.

The first is that historically, the neutrinos were not known to have mass. Particles that don't have mass don't need mass eigenstates, so there was no reason to define, for example, the electron neutrino as "the lightest mass eigenstate neutrino".

The second is that practically, we cannot create experiments where only one generation of neutrino is involved. Because of the small mass of the neutrino, and because the weak force mixes mass eigenstates, any experiment that has a 1st mass generation neutrino, that is, a \nu_1, will also have a contribution from a 2nd and 3rd generation neutrino.

To get a probability out of a quantum mechanics, one first writes down all the possible things that can happen. One then assigns a complex number to each of those things. Then you add up all the complex numbers. Then you take the resulting sum, a complex number, and compute its absolute value squared, a real number. This real number is your probability.

When you write down "all the possible things that can happen", you have to include all the things that are within the range of energies that your experiment can detect. This is what mjsd is talking about. For example, if you are detecting the decay of a neutron, you don't have to consider decays that are energetically impossible.

If you look up the masses of the neutron, proton, electron, and the three neutrinos, you will find that the three neutrinos are so close to zero that they don't even show up in the error bars of the neutron and proton masses. Thus any neutron decay experiment involves all three generations of neutrinos.

Now if you look up the masses of the electron, muon, and tau, you will find that a neutron cannot possibly decay into a proton, muon and anti neutrino. The reason is that the muon weighs too much.

If we were in a universe where the electron, muon, and tau masses were much smaller than the difference between the proton and neutron masses, then neutron decay would involve all three generations of charged leptons (i.e. electron, muon and tau), and it wouldn't be so natural to talk about "electron neutrinos".

In fact, just as the muon and tau are higher mass analogues of the electron (in the three generations 1, 2, 3), there exist higher mass analogues of the neutron. They are called "resonances", and sure enough, they can decay into a proton, muon, and anti neutrino. The resonances of the neutron that are particularly appropriate to this example are the P_{11} resonances, the N(939), N(1440), and the N(1710). The N(939) is just the neutron you're familiar with. The numbers in parentheses are the masses in MeV. The mass of the muon is 105MeV, so it can be created in the decay of a N(1440). The mass of the tau is 1776 MeV, so it is too heavy to be created in the decay of any of these resonances to a proton.

Here is where you can look up more incomprehensible information on these particle states:
http://pdg.lbl.gov/2007/listings/contents_listings.html

So when people talk about "neutrino oscillation" they are talking about oscillations between the flavor eigenstates. If you translate this into the mass eigenstate language, what is going on is interference between the emission of neutrinos of the three generations.

If you analyze decays of things like the N(1440) that have enough energy to create muons as well as electrons, you will find that these interfere just like the neutrinos do. If you were in the habit of labeling the flavor eigenstates so that the \nu_1, \nu_2, \nu_3 were flavor as well as mass eigenstates, and the electron, muon and tau were mass eigenstates but not flavor eigenstates, then in the case of the decay of the N(1440), you'd find a case of "electron oscillation", just like you're asking about.

And the oscillation would arise from exactly the same place that neutrino oscillation comes from. The mass eigenstates, the electron and muon, have different wavelengths. As a function of distance, they beat against each other just like any other wave interference does. And the result is that the probability of getting an electron, versus the probability of getting a muon, will depend on distance in the decay of the N(1440). This is the charged lepton analog to neutrino oscillation.
 
Last edited:
Hi everyone, I am doing a final project on the title " fundamentals of neutrino physics". I wanted to raise some issues with neutrino which makes it the possible way to the physics beyond standard model. I am myself doing some research on these topics but at some points the math bugs me out. Anyway, i have some questions which answers themselves confounded me due to the complicated math. Some pf them are: 1. Why wouldn't there be a mirror image of a neutrino? Is it because they are...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 87 ·
3
Replies
87
Views
19K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K