neopolitan said:
We are discussing physics aren't we, not social work?
We have a rocket with two clocks and we have an observer who is not at rest relative to the rocket. If I want to know what it observed I expect to hear "I see a rocket in motion with two clocks on it, one on each end" not "I see some dorky physics guy observing me".
Of course I am discussing the observer's instant. Why is that so hard for you to grasp?
If I've understood you correctly, you're discussing how the outside observer's instant is seen from the perspective of an observer on the rocket (i.e if we look at two simultaneous readings in the rocket-observer's frame, you're talking about which reading is in the future and which is in the past according to the outside observer's definition of simultaneity). I had been thinking you were talking about the perspective of an observer outside the rocket, and what time the two clocks show simultaneously in
his frame. I think this is a pretty understandable confusion given that you didn't really spell out what you were talking about (DaleSpam also seems to have interpreted your comment as involving simultaneous readings in the rocket observer's frame rather than the rocket-observer's frame), so there's no need for condescending comments like "why is that so hard for you to grasp?"
neopolitan said:
Yes, that is what I mean. See how even if the analogy is not perfect (I knew it wasn't by the way) it did help you to understand?
No, it didn't. It was the previous comment about "instants" that helped me to understand (especially the comment 'An instant in the rocket's frame, in which clocks at the nose and the tail read the same, is similarly not an instant in the observer's frame', which clued me in that you might be talking about simultaneous readings in the rocket-observer's frame rather than the outside observer's frame), and you can see that I divined your meaning in the response to that earlier section. I hadn't even read the following paragraph when I fired off that response, and if your post had consisted only of the time travel analogy I don't think it would have helped me at all.
JesseM said:
If so, I just want to note that even if we talk in this way, which clock is "further in the outside observer's future" depends on your choice of frame. We might take the frame of an observer who's moving relative to the first observer outside the rocket, but in the opposite direction as the rocket...in this new observer's frame, the time on the nose-clock at a given instant would be further in the first outside observer's past than the time on the tail-clock at the same instant.
neopolitan said:
guess I implied that you were willfully incomprehending so an implication here of stupidity on my part is fair enough.
I have to say neopolitan, I consider your constant attempts to mind-read my motives (inevitably in uncomplimentary ways) really disrespectful. I meant no implication of stupidity here, the fact that I "want to note" something doesn't even imply that I think you would disagree with it, and it certainly doesn't imply I think you're stupid. Anyway as seen below, I think you were actually leaping to incorrect conclusions about what I was saying in that comment.
neopolitan said:
Your scenario is precisely the same as "what if the rocket was going backwards relative to the observer so that the tail was effectively the nose and the nose was effectively tail".
No, actually, it's a little more complicated. In your scenario, there have to be two observers whose frames we refer to--the first observer A who sees the rocket going forward, and a second B on board the rocket. Unless there's an error in my interpretation of your words, what you're saying is that if we look at readings on the two clocks which are simultaneous in the frame of B, then the reading on the nose clock has a greater time-coordinate in the frame of A than the time-coordinate of the reading on the tail clock in the frame of A. In my scenario, it's still true that the rocket is moving forward relative to A, but I'm introducing a third observer C who is moving in the
opposite direction as the rocket in A's frame (so this observer C
also sees the rocket moving forward, at an even greater speed than in A's frame), and saying that if we look at readings on the two clocks which are simultaneous in the frame of C, then the reading on the tail clock has a greater time-coordinate in the frame of A than the time-coordinate of the reading on the nose clock. This is an entirely different scenario from imagining that the outside observer A sees the rocket moving backwards, and then looking at readings on the two clocks which are simultaneous in the frame of an observer B on board the rocket, and noting that in
this case if we look at two readings which are simultaneous in the frame of B, then the reading on the tail clock (which is now effectively the nose clock in A's frame) has a greater time-coordinate in the frame of A than the time coordinate of the reading on the nose clock (which is now effectively the tail clock in A's frame) in the frame of A.
neopolitan said:
Perhaps this is too confusing for you, but if you think about it, I am discussing a rocket which is departing from the observer - a rocket which is going forwards since the nose is further away than the tail.
Well, I'm sure you would agree with this, but for the rocket to be "going forward" that means the nose is further away than the tail when the rocket is moving away from the observer A, but it also means the nose is
closer than the tail when the rocket is moving towards the observer A (and at some moment they will be equidistant as the rocket passes A). Whether the rocket is moving towards A or away from A makes no difference to our statements about simultaneity, as long as the rocket is moving forward in both cases.
neopolitan said:
If you want to change the scenario so that the tail is further away than the nose, fine, then I agree the tail will reach the future before the nose and the clock on the tail will read a lower elapsed time than the nose - if the rocket is in reverse relative to the observer.
Again, that wasn't what I was suggesting. I was still suggesting a scenario where the rocket was going forward relative to A (if the rocket was moving away from A, the nose would be further than the tail), but where instead of then looking at readings of the rocket's clocks which occur simultaneously in the frame of an observer B on board the rocket, we instead look at readings on the rocket's clocks which occur simultaneously in the frame of an observer C who is moving in the opposite direction as the rocket in A's frame, so that in C's frame the rocket is moving forward at an even greater speed than in A's frame. In this case the reading on the tail clock will be "further in the future" in A's frame than the reading on the nose clock (where again, the two readings we're talking about were chosen to be simultaneous in C's frame).
As an example, suppose the rocket is 10 light-seconds long in its own rest frame, and in A's frame its moving forward at 0.6c, so in A's frame the tail clock's reading is ahead of the nose clock's reading by 6 seconds. Now choose an observer C who sees the rocket moving forward at 0.8c, so in C's frame the tail clock's reading is ahead of the nose clock's reading by 8 seconds. Pick two readings which are simultaneous in C's frame, like the tail clock reading 10 seconds and the nose clock reading 2 seconds. In A's frame when the nose clock reads 2 seconds, the nose clock reads 8 seconds and won't read 10 seconds until a later time, so the event of the tail clock reading 10 seconds is "further in the future" in A's frame than the event of the nose clock reading 2 seconds. In contrast, if we picked two readings which were simultaneous in the frame of the observer B on board the rocket, like the tail clock reading 3 seconds and the nose clock reading 3 seconds, then we'd find that the event of the
nose clock reading 3 seconds is "further in the future" in A's frame than the event of the tail clock reading 3 seconds.
neopolitan said:
Which analogy are you referring to? The explanation analogy with the time machines? If so, they have done their job. Forget the analogy and go back to trying to understand what I said originally.
You can try to describe the model now as requested, if you like.
OK, but then I don't really understand what you were asking with this earlier comment that I was responding to:
This is where it gets less like semantics and more like something interesting ... can you model that? Not just wave it away, not just say "that's just relativity", not just show the mathematics on what must happen, but describe a model in which that is possible.
This also may be the point at which I get stomped on, so if you feel like coming back with "can you?" then I will have to politely decline.
What is the difference between a "model" and just showing the "mathematics on what must happen" according to relativity? In physics when I hear the word "model" I just interpret it to mean a mathematical model, do you mean something different? And when you say "describe a model in which that is possible", what did you mean by "that" if you weren't referring back to your earlier picture involving one guy moving into the future faster than the other? Describe a model in which
what is possible?