What are the practical applications and uses of Lie Algebras?

  • Thread starter Thread starter mnb96
  • Start date Start date
  • Tags Tags
    Lie algebras
Click For Summary
Lie Algebras are mathematical structures that arise from the study of Lie Groups, particularly in the context of transformations and symmetries. They are essential for understanding the commutator relations of infinitesimal transformations, which are crucial in physics, especially in quantum mechanics. A simple example is the SU(2) group, which describes spin and quantum numbers, where the Pauli matrices serve as generators of the Lie Algebra. The discussion highlights the importance of having a foundational understanding of abstract algebra to grasp these concepts fully. Overall, Lie Algebras play a vital role in various applications, particularly in theoretical physics.
mnb96
Messages
711
Reaction score
5
Hello,
Can anyone explain in extremely simple words what Lie Algebras deal with, and are useful for? Could you also point out a very simple, toy example, in which the use of Lie Algebras is vital?

Thanks!
 
Physics news on Phys.org
Lie Groups

:P

I know a few things about Lie Groups, but I'm a n00b to it. I don't understand it overall because so much of the terminology requires a good foundation in abstract algebra (which I do not have). I'd be interested to hear if anyone can give you a satisfactory answer, maybe I'd learn something about the concept of it myself.

But, simple 3d space that you are familiar with is considered a Lie group.
 
The Lie Algebra is the commutator relations for the infinitesimal elements around the identity element in a certain transformation group.

e.g. the SU(2) group, the group of unitary 2x2 matrices with determinant = +1.
We can parametrize all these matrices in terms of three matrices and the identity.
These three matrices are the Pauli matrices, and we can write the element infinitelsimal close to the identiy as:
1 + epsilon_a * T^a

where a is an index a = 1,2,3, and we have employed the einstein summation convention.
The T^1, T^2, T^3 are the pauli matrices, and the commutation relation between these specify the Lie Algebra.

We use this since this is related to symmetries, e.g. spin and quantum numbers (in physics, I am a physicist)

Read more:
http://arxiv.org/abs/0810.3328
http://en.wikipedia.org/wiki/Lie_algebra
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K