How Can I Understand and Use Double-Angle Formulas in Trigonometry?

  • Thread starter Thread starter Cod
  • Start date Start date
  • Tags Tags
    Formulas
Click For Summary
Understanding double-angle formulas in trigonometry involves applying specific identities to find values for sin(2x), cos(2x), and tan(2x). The formulas are sin(2x) = 2(sin x)(cos x), cos(2x) = cos²x - sin²x, and tan(2x) = 2tan x / (1 - tan²x). To solve problems, first determine sin x using the Pythagorean identity, then substitute the known values of sin x and cos x into the double-angle formulas. The discussion emphasizes using the addition rules for sine and cosine to derive these identities and suggests that after calculating sin(2x) and cos(2x), one can find tan(2x) easily. Mastery of these steps is crucial for effectively utilizing double-angle formulas in trigonometry.
Cod
Messages
324
Reaction score
4
For some reason, I cannot comprehend the concepts behind this. I read the example problems over and over; however, I still cannot understand the process when I go to study or do work on it.

Just to refresh your minds, the double-angle formulas:

sin2x = 2(sinx)(cosx)
cos2x = cos^2x - sin^2x = 1 - 2sin^2x = 2cos^2x-1
tan2x = 2tanx/1-tan^2x

The book example:

If cosx = -2/3 and x is in quadrant II; find sin2x and cos2x.



If someone could explain the processes when using these formulas to solve problems, I'd greatly appreciate it. The book just isn't helping me any.
 
Mathematics news on Phys.org
sin x = sqrt(1 - (cos x)^2). Since cos x = -2/3 we have:
sin x = sqrt(5/9). So sin x = sqrt(5)/3 or sin x = -sqrt(5)/3.
We know that x is in the second quadrant and that makes sin x > 0. So sin x = sqrt(5)/3. Now you know sin x and cos x. Just replace them and find sin 2x and cos 2x.

cos 2x = (cos x)^2 - (sin x)^2 so it's less confusing...
 
It's quite simple really:you have cos x,then you compute sinx and sustitute in the formulas for the double angle.Got it??
 
So how would you go about finding 'tan2x'? I understand that tanx = sinx/cosx. I just don't see how you can plug that into the formula: tan2x = 2tanx/1-tan^2x.


Unless...

2(sinx/cosx)/1-(sin^2x/cos^2x) <-----would that be correct?

If that's correct, would I just plug in the known values of sin and cos? Then do the arithmatic?
 
Last edited:
yes, you could do that or you could do (sin 2x/cos 2x) after you have found the previous two results.
 
I think this might be what you are looking for:

sin(2x) = sin(x+x)
cos(2x) = cos(x+x)
tan(2x) = sin(2x)/cos(2x)

now we use the rule of addition:
sin(x+x) = sin(x)cos(x) + cos(x)sin(x) = 2sin(x)cos(x)
cos(x+x) = cos(x)cos(x) - sin(x)sin(x) = cos^2(x) - sin^2(x) = cos^2(x) - (1 - cos^2(x)) = 2cos^2(x) - 1

tan(2x) = 2sin(x)cos(x) / 2cos^2(x) - 1 ... etc
 
Last edited:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 28 ·
Replies
28
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
8
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
6K
  • · Replies 3 ·
Replies
3
Views
2K