How do we express complex powers like 21+i in standard form?

AI Thread Summary
To express complex powers like 21+i in standard form, the discussion highlights the use of Euler's formula, e^(ix) = cos(x) + i sin(x). The transformation of complex numbers involves logarithmic properties, allowing expressions like a^(bi) to be rewritten using exponentials. Specifically, 2^i can be calculated as cos(ln(2)) + i sin(ln(2)), resulting in approximately 0.769 + 0.639i. Consequently, for 21+i, the expression simplifies to 2[cos(ln(2)) + i sin(ln(2))], yielding a final result of 2 cos(ln(2)) + 2i sin(ln(2)). This method effectively demonstrates how to convert complex powers into the standard a + bi form.
Lonewolf
Messages
329
Reaction score
1
How do we express complex powers of numbers (e.g. 21+i) in the form a+bi, or some other standard form of representation for complex numbers?
 
Mathematics news on Phys.org
First, of course, 21+i= 2*2i so the question is really about 2i (or, more generally, abi).

Specfically, look at eix.

It is possible to show (using Taylor's series) that

e^(ix)= cos(x)+ i sin(x).

a^(bi)= e^(ln(a^(bi))= e^(bi*ln(a))= cos(b ln(a))+ i sin(b ln(a))
= cos(ln(a^b))+ i sin(ln(a^b))

For your particular case, 2^i= cos(ln(2))+ i sin(ln(2))
= 0.769+ 0.639 i.

2^(1+i)= 2(0.769+ 0.639i)= 0.1538+ 1.278 i.
 
21+i= 2*2i

Now why didn't I see that? Oh well, thanks for pointing it out. :smile:
 
You're no doubt familiar with Euler's expression

exp(i x) = cos(x) + i sin(x)

You're probably also familiar that logarithms can be expressed in any base you'd like, like this:

loga x = ( logb x ) / ( logb] a )

For example, if your calculator has only log base 10, and you want to compute log2 16, you could enter

log10 16 / log10 2

We can put these facts together to good use.

To start with, let's try a simple one: express 2i in the a + bi form. We can express 2i as a power of e by solving this equation:

2i = ex
i ln 2 = x

We've just used the logarithm rule I described above in "reverse." So we've just changed the problem to expressing exp(i ln 2) in a + bi form. Now we can just apply Euler's identity, and we get

exp(i ln 2) = cos(ln 2) + i sin(ln 2).

Thus 2i = cos(ln 2) + i sin(ln 2), as we wished to find.

Now let's try 21 + i. I'm going to skip all the fanfare and just show the steps.

21+i = ex
(1+i) ln 2 = x

e(1+i) ln 2 = 21+i
eln 2 + i ln 2
eln 2 ei ln 2
2 ei ln 2
2 [ cos(ln 2) + i sin(ln 2) ]
2 cos(ln 2) + 2 i sin(ln 2)

Hope this helps.

- Warren
 
Last edited:
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top