How do we express complex powers like 21+i in standard form?

Click For Summary
To express complex powers like 21+i in standard form, the discussion highlights the use of Euler's formula, e^(ix) = cos(x) + i sin(x). The transformation of complex numbers involves logarithmic properties, allowing expressions like a^(bi) to be rewritten using exponentials. Specifically, 2^i can be calculated as cos(ln(2)) + i sin(ln(2)), resulting in approximately 0.769 + 0.639i. Consequently, for 21+i, the expression simplifies to 2[cos(ln(2)) + i sin(ln(2))], yielding a final result of 2 cos(ln(2)) + 2i sin(ln(2)). This method effectively demonstrates how to convert complex powers into the standard a + bi form.
Lonewolf
Messages
329
Reaction score
1
How do we express complex powers of numbers (e.g. 21+i) in the form a+bi, or some other standard form of representation for complex numbers?
 
Mathematics news on Phys.org
First, of course, 21+i= 2*2i so the question is really about 2i (or, more generally, abi).

Specfically, look at eix.

It is possible to show (using Taylor's series) that

e^(ix)= cos(x)+ i sin(x).

a^(bi)= e^(ln(a^(bi))= e^(bi*ln(a))= cos(b ln(a))+ i sin(b ln(a))
= cos(ln(a^b))+ i sin(ln(a^b))

For your particular case, 2^i= cos(ln(2))+ i sin(ln(2))
= 0.769+ 0.639 i.

2^(1+i)= 2(0.769+ 0.639i)= 0.1538+ 1.278 i.
 
21+i= 2*2i

Now why didn't I see that? Oh well, thanks for pointing it out. :smile:
 
You're no doubt familiar with Euler's expression

exp(i x) = cos(x) + i sin(x)

You're probably also familiar that logarithms can be expressed in any base you'd like, like this:

loga x = ( logb x ) / ( logb] a )

For example, if your calculator has only log base 10, and you want to compute log2 16, you could enter

log10 16 / log10 2

We can put these facts together to good use.

To start with, let's try a simple one: express 2i in the a + bi form. We can express 2i as a power of e by solving this equation:

2i = ex
i ln 2 = x

We've just used the logarithm rule I described above in "reverse." So we've just changed the problem to expressing exp(i ln 2) in a + bi form. Now we can just apply Euler's identity, and we get

exp(i ln 2) = cos(ln 2) + i sin(ln 2).

Thus 2i = cos(ln 2) + i sin(ln 2), as we wished to find.

Now let's try 21 + i. I'm going to skip all the fanfare and just show the steps.

21+i = ex
(1+i) ln 2 = x

e(1+i) ln 2 = 21+i
eln 2 + i ln 2
eln 2 ei ln 2
2 ei ln 2
2 [ cos(ln 2) + i sin(ln 2) ]
2 cos(ln 2) + 2 i sin(ln 2)

Hope this helps.

- Warren
 
Last edited:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 13 ·
Replies
13
Views
850
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 108 ·
4
Replies
108
Views
11K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K