How Did Viete Solve Roomen's Problem in 1595?

  • Thread starter Thread starter Ethereal
  • Start date Start date
Click For Summary
In 1595, François Viète successfully solved Adriaan van Roomen's complex polynomial equation, which posed a significant challenge to mathematicians of the time. Viète's approach involved innovative techniques in algebra, particularly the use of symmetric functions and relationships between the roots. His work laid the groundwork for modern algebraic methods and contributed to the understanding of polynomial equations. The discussion highlights the importance of Viète's contributions and references various resources for further exploration of his methods. Overall, Viète's solution marked a pivotal moment in the history of mathematics.
Ethereal
In 1593, Adriaan van Roomen posed the following problem to "all the mathematicians of the known world": Find the roots of:

x^45 - 45x^43 + 945x^41 - 12300x^39 + 111150x^37 - 740459x^35 + 3764565x^33 - 14945040x^31 + 469557800x^29 - 117679100x^27 + 236030652x^25 - 378658800x^23 + 483841800x^21 - 488484125x^19 + 384942375x^17 - 232676280x^15 + 105306075x^13 - 34512074x^11 + 7811375x^9 - 1138500x^7 + 95634x^5 - 3795x^3 +45x = C

where C is a constant.

Viete solved this in 1595. How was this done?
 
Mathematics news on Phys.org
Better Link
http://francois-viete.wikiverse.org/
 
Last edited by a moderator:
Best link
explanation with mathmatics

http://pup.princeton.edu/books/maor/sidebar_d.pdf

sorry about having so many links
but i posted them as I found them
 
Last edited by a moderator:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...