View Single Post
May12-08, 04:46 PM
P: 9
In Levine's Quantum Chemistry textbook the Heaviside step function is defined as:


Dirac delta function is:

[tex]\delta (x-a)=dH(x-a) / dx[/tex]

Now, the integral:

[tex]\int ^{\infty}_{-\infty}f(x)\delta (x-a)dx[/tex]

Is evaluated using integration by parts considering

[tex]u=f(x), du=f'(x)[/tex]
[tex]dv=\delta (x-a)dx, v=H(x-a)[/tex]

We have then:
[tex]\int ^{\infty}_{-\infty}f(x)\delta (x-a)dx=f(x)H(x-a)|^{\infty}_{-\infty}-\int ^{\infty}_{-\infty}H(x-a)f'(x)dx[/tex]

[tex]\int ^{\infty}_{-\infty}f(x)\delta (x-a)dx=f(\infty)-\int ^{\infty}_{-\infty}H(x-a)f'(x)dx[/tex]

Since [tex]H(x-a)[/tex] vanishes for [tex]x<a[/tex], the integral becomes:

[tex]\int ^{\infty}_{-\infty}f(x)\delta (x-a)dx=f(\infty)-\int ^{\infty}_{a}H(x-a)f'(x)dx=f(\infty)-\int ^{\infty}_{a}f'(x)dx[/tex]

This is the point where my question arrives. [tex]H(x-a)[/tex] is considered to have a value of unity for all the integral and that's why it is pulled out of the integral as a constant, however the lower bound of the integral is [tex]a[/tex] and in this point [tex]H(x-a)=1/2[/tex]. Could you please tell me if the following explanation is correct?

I think that because in all the integral, except in [tex]a[/tex], [tex]H(x-a)=1[/tex] and since the upper bound is infinity the value of the integral at the point [tex]a[/tex] can be ignored.

If I'm wrong, any suggestion for correcting my explanation will be appreciated.
Phys.Org News Partner Science news on
Security CTO to detail Android Fake ID flaw at Black Hat
Huge waves measured for first time in Arctic Ocean
Mysterious molecules in space