Help using Green’s functions in solving Differential Equations please

In summary, the conversation included difficulties with tasks related to the Green function and solving differential equations using it. The summary also mentioned the use of partial integration and convolution as potential solutions to the tasks.
  • #1
Lambda96
158
59
Homework Statement
see post
Relevant Equations
none
Hi,

unfortunately I have several problems with the following task:

Bildschirmfoto 2023-07-06 um 10.52.15.png


Bildschirmfoto 2023-07-06 um 10.52.41.png


I have problems with the tasks a, d and e

Unfortunately, the Green function and solving differential equations with the Green function is completely new to me

In task b, I got the following for ##f_h(t)=e^{-at}##.Task a

$$\hat{L}G(t)=\Bigl( \frac{d}{dt} +a \Bigr) \Theta(t) f_h(t)$$
$$\hat{L}G(t)=\frac{d}{dt}\Theta(t) f_h(t) +a \Theta(t) f_h(t)$$
$$\hat{L}G(t)=\delta(t) f_h(t) + \Theta(t) f'_h(t) +a \Theta(t) f_h(t)$$
$$\hat{L}G(t)=\delta(t) f_h(t) -a \Theta(t) f_h(t) +a \Theta(t) f_h(t)$$
$$\hat{L}G(t)=\delta(t) f_h(t)$$

Can I now argue as follows that ##\hat{L}G(t)=\delta(t)## so when I multiply the operator by the Green function, I always get only one value. Then the following ##\delta(t)=\delta(0)## applies, so it follows that ##\delta(t) f_h(t)=\delta(0) f_h(0)## and since ##f_h(0)=1## only ##\delta(t)## remains on the left side of the equationTask d

I assumed that I should calculate the following integral.

$$\tilde{G}(\omega)= \int_{-\infty}^{\infty} dt \ e^{i \omega t} \hat{L} G(t) $$
$$ \tilde{G}(\omega)=\int_{-\infty}^{\infty} dt \ e^{i \omega t} \frac{d}{dt} G(t) +e^{i \omega t} a G(t) $$
$$ \tilde{G}(\omega)=\int_{-\infty}^{\infty} dt \ e^{i \omega t} \frac{d}{dt} G(t) +\int_{-\infty}^{\infty} dt \ e^{i \omega t} a G(t) $$

I then applied partial integration for the first integral

$$ \tilde{G}(\omega)=\biggl[ e^{i \omega t} G(t) \biggr]_{-\infty}^{\infty}-\int_{-\infty}^{\infty} dt \ i \omega e^{i \omega t} G(t) +\int_{-\infty}^{\infty} dt \ e^{i \omega t} a G(t) $$

Now, unfortunately, I don't get any further and I can't do anything with the hint from the task at the moment.
Task e

I thought that a solution may look like the following.

$$ f(t)= \int_{0}^{t} G(t)g(t) dt $$

I then calculated the following integral

$$ f(t)= \int_{0}^{t} G(t)g(t) dt $$
$$ f(t)= \int_{0}^{t} e^{-at} e^{2at} dt $$
$$ f(t)= \frac{e^{at} -1}{a}$$

If I substitute this ##f(t)## into ##\hat{L}f(t)##, I get ##2e^{at}-2## but I should get ##e^{2at}##.
 
Physics news on Phys.org
  • #2
Lambda96 said:
Task a

$$\hat{L}G(t)=\Bigl( \frac{d}{dt} +a \Bigr) \Theta(t) f_h(t)$$
$$\hat{L}G(t)=\frac{d}{dt}\Theta(t) f_h(t) +a \Theta(t) f_h(t)$$
$$\hat{L}G(t)=\delta(t) f_h(t) + \Theta(t) f'_h(t) +a \Theta(t) f_h(t)$$
$$\hat{L}G(t)=\delta(t) f_h(t) -a \Theta(t) f_h(t) +a \Theta(t) f_h(t)$$
$$\hat{L}G(t)=\delta(t) f_h(t)$$
Just use the property ##f(t)\delta(t) = f(0)\delta(t)##.

Lambda96 said:
Task d

I assumed that I should calculate the following integral.
The problem said to take the Fourier transform of the differential equation.

Lambda96 said:
Task e

I thought that a solution may look like the following.

$$ f(t)= \int_{0}^{t} G(t)g(t) dt $$
Look up convolution.
 
  • Like
Likes Lambda96
  • #3
Thanks vela for your help 👍👍👍, with your tips I could solve the tasks now :smile:
 
  • Like
Likes vela

1. What are Green's functions?

Green's functions are mathematical tools used in solving differential equations. They represent the response of a system to an impulse or a delta function input.

2. How are Green's functions used in solving differential equations?

Green's functions are used to find the solution of a differential equation by breaking it down into simpler, solvable parts. They act as a building block for constructing the overall solution.

3. What types of differential equations can be solved using Green's functions?

Green's functions can be used to solve various types of linear differential equations, including ordinary differential equations, partial differential equations, and boundary value problems.

4. Are there any limitations to using Green's functions in solving differential equations?

Green's functions are most effective for linear differential equations and may not be suitable for nonlinear equations. Additionally, they require specific boundary conditions and may not have a closed-form solution in some cases.

5. How can I learn more about using Green's functions in solving differential equations?

There are many resources available, including textbooks, online tutorials, and video lectures, that can provide a comprehensive understanding of Green's functions and their application in solving differential equations. It is also beneficial to practice solving problems using Green's functions to improve proficiency.

Similar threads

  • Advanced Physics Homework Help
Replies
4
Views
950
Replies
2
Views
1K
  • Advanced Physics Homework Help
Replies
6
Views
896
  • Advanced Physics Homework Help
Replies
2
Views
825
  • Advanced Physics Homework Help
Replies
4
Views
334
  • Advanced Physics Homework Help
Replies
4
Views
781
  • Advanced Physics Homework Help
Replies
6
Views
1K
  • Advanced Physics Homework Help
Replies
24
Views
816
  • Advanced Physics Homework Help
Replies
1
Views
680
  • Advanced Physics Homework Help
Replies
2
Views
874
Back
Top