View Single Post
Ai52487963
#1
Mar17-09, 05:24 PM
P: 115
1. The problem statement, all variables and given/known data
Show that the multiplicity of an Einstein solid with large N and q is

[tex]\frac{\left(\frac{q+N}{q}\right)^q\left(\frac{q+N}{N}\right)^N}{\sqrt{2 \pi q\left(q+N\right)/N}}[/tex]


2. Relevant equations
[tex]N! \approx N^N e^{-N} \sqrt{2 \pi N}[/tex]



3. The attempt at a solution
Well, I've done thus so far:

[tex]
\Omega(N,q) = \frac{(q+N-1)!}{q!(N-1)!} \approx \frac{(q+N)!}{q!N!}

ln(\Omega) = ln(q+N)! - lnq! - lnN
\par
\approx (q+N)ln(q+N) - (q+N) - qlnq+q - NlnN + N = (q+N)ln(q+N) - qlnq - NlnN

[/tex]

I feel like I'm close, but I've no idea where to go from here.
Phys.Org News Partner Science news on Phys.org
What lit up the universe?
Sheepdogs use just two simple rules to round up large herds of sheep
Animals first flex their muscles