Details regarding the high temperature limit of the partition function

In summary, the steps leading towards converting the sum to an integral require that we assume that the energies of the system are polynomial in the quantum number $n$, that the degeneracies are polynomial in $n$, and that the energies are indexed by a quantum number $q$. This works well for large $n$, but might not be accurate for small $n$. Approximating the sum by an integral allows us to use a well-approximated approximation for $Z$.
  • #1
EE18
112
13
Homework Statement
Consider a quantum system where the energy of the ##n##th level, ##\epsilon_n \geq 0##, is some polynomial function of ##n## of degree ##q## (##q > 0##), and the degeneracy of this level, ##g_n##, is some other polynomial function of n of degree ##r## (##r \geq 0##). In this limit one may approximate the sum in the partition function by an integral. Furthermore, the asymptotic behaviour is dominated by the highest-order terms in the polynomials. Show this.
Relevant Equations
See work below.
My main question here is about how we actually justify, hopefully fairly rigorously, the steps leading towards converting the sum to an integral.

My work is below:
If we consider the canonical ensemble then, after tracing over the corresponding exponential we get:
$$Z = \sum_{n=0}^\infty g_ne^{-\beta \epsilon_n}$$
where we have assumed, per the question, that we have a quantum system where the eigenenergies are indexed by some quantum number ##n## which takes on nonnegative integer values. Further, we are told to assume that the energies ##\epsilon_n## are polynomials in ##n## of degree ##q## and the degeneracies ##g_n## are polynomials in ##n## of degree ##r##:
$$\epsilon_n = a_qn^q+...+a_0$$
and
$$g = b_rn^r+...+b_0.$$
Now define, on looking at the arguments of the exponentials in ##Z## [Question, why does this work for ##n=0## case? Do we have to separate that from the rest of the integral if we are being rigorous? In that case, should the integral below start at 1?],
$$x_n := ({\beta\epsilon_n})^{1/q} = (\beta a_qn^q)^{1/q}\left(1+\frac{1}{q}(a_{q-1}n^{-1}+...+a_0n^{-q}) + ...\right)$$
where in the last step we've used a binomial expansion [Why is this expansion justified in this limit? I see why it works for large ##n##, but shouldn't this not be good for small ##n##? E.g. ##n = 1##?. For large ##n## this becomes
$$x_n \approx (\beta a_qn^q)^{1/q} \sim \beta^{1/q}n$$
where ##\sim## denotes an asymptotic scaling relation (i.e. the proportionality is independent of $n$).

From our work above, it's apparent that (on multiplying and dividing terms by ##\beta^{1/r}## and using ##g_n \sim n^r## for large ##n##) that (NB that ##x_n^q## means ##(x_n)^q## where ##x_n## is related to ##n## as above)
$$Z = \sum_{n=0}^\infty g_ne^{-\beta \epsilon_n} \sim \sum_{n=0}^\infty \frac{\beta^{r/q}}{\beta^{r/q}}n^re^{-x^q_n} = \frac{1}{\beta^{r/q}}\sum_{n=0}^\infty x_n^re^{-x^q_n}.$$
We now move to approximate this sum by an integral. Now define the increments
$$\Delta x := x_{n+1} - x_n = \beta^{1/q}.$$
For ##\beta## very small these becomes very small, so that the Riemann sum becomes well-approximated by the corresponding integral:
$$Z \sim \frac{1}{\beta^{r/q}}\sum_{n=0}^\infty x_n^re^{-x^q_n} = \frac{1}{\beta^{r/q}}\sum_{n=0}^\infty \frac{\Delta x}{\beta^{1/q}} x_n^re^{-x^q_n} \approx {\beta^{-\frac{r+1}{q}}}\int_{0}^\infty dx \, x^re^{-x^q} \sim \beta^{-s}$$
for ##s = \frac{r+1}{q}## and where in the last step we've noted that the integral is just some number (constant with respect to temperature or $\beta$).Any help with justifying the bolded steps would be much appreciated!
 
Physics news on Phys.org
  • #2
Just bumping this if possible
 

What is the high temperature limit of the partition function?

The high temperature limit of the partition function, also known as the classical limit, is a theoretical concept in statistical mechanics that describes the behavior of a system at very high temperatures. It is defined as the point at which the thermal energy of the system is much greater than the level spacing between energy levels, making quantum effects negligible.

How is the high temperature limit of the partition function calculated?

The high temperature limit of the partition function can be calculated using the classical approximation, which assumes that the energy levels of the system are continuous rather than discrete. This allows for the use of integral calculus to evaluate the partition function, resulting in a simpler expression.

What is the significance of the high temperature limit of the partition function?

The high temperature limit of the partition function is important because it provides a way to simplify the calculation of thermodynamic properties of a system at high temperatures. It also allows for the application of classical thermodynamics to systems that may exhibit quantum behavior at lower temperatures.

How does the high temperature limit of the partition function relate to the ideal gas law?

The high temperature limit of the partition function is closely related to the ideal gas law, which describes the behavior of a hypothetical gas at low pressures and high temperatures. In this limit, the partition function can be expressed in terms of the ideal gas law, making it a useful tool for analyzing real gases at high temperatures.

Are there any limitations to the high temperature limit of the partition function?

While the high temperature limit of the partition function is a useful approximation for many systems, it does have its limitations. It assumes that the energy levels of the system are continuous, which may not be the case for all systems. Additionally, it may not accurately describe the behavior of systems with strong intermolecular interactions or non-classical behavior at high temperatures.

Similar threads

  • Advanced Physics Homework Help
Replies
2
Views
1K
  • Advanced Physics Homework Help
Replies
1
Views
1K
  • Advanced Physics Homework Help
Replies
1
Views
935
  • Advanced Physics Homework Help
Replies
4
Views
989
  • Advanced Physics Homework Help
Replies
1
Views
584
  • Advanced Physics Homework Help
Replies
4
Views
1K
  • Advanced Physics Homework Help
Replies
3
Views
1K
  • Advanced Physics Homework Help
Replies
1
Views
697
  • Advanced Physics Homework Help
Replies
3
Views
1K
  • Advanced Physics Homework Help
Replies
3
Views
890
Back
Top