View Single Post
Mar22-09, 07:50 PM
P: 452
1. The problem statement, all variables and given/known data

Let X and Y be continuous random variables having joint probability density function

[tex]f(x,y) = e^{-y}[/tex] if 0 [tex]\leq x \leq y[/tex]

A) Determine the joint cumulative distribution function F(x,y) of X and Y. (Hint: Consider the three cases 1) [tex]x \leq 0[/tex] or [tex]y \leq 0[/tex] 2) 0 < x < y 3) 0 <y < x

B) Let [tex]F_X (x)[/tex] and [tex]F_Y (y)[/tex] be the marginal cumulative distribution functions of X and Y. One can show that [tex]F_X (x) = Lim_{Y \rightarrow \infty} F(x,y)[/tex] and [tex]F_Y (y) = Lim_{X \rightarrow \infty} F(x,y)[/tex]. Use this result to obtain [tex]F_X (x)[/tex] and [tex]F_Y (y)[/tex]
2. Relevant equations

3. The attempt at a solution

Not sure how to start with A).

I know that [tex] F(x,y) = \int^x_{- \infty} \int^y_{- \infty} f(x,y) dy dx[/tex]

Does it mean for the case where x < 0 it would be:

[tex] F(x,y) = \int^0_{- \infty} \int^y_{- \infty} f(x,y) dy dx[/tex] ?
Phys.Org News Partner Science news on
NASA team lays plans to observe new worlds
IHEP in China has ambitions for Higgs factory
Spinach could lead to alternative energy more powerful than Popeye