View Single Post
cse63146
#1
Mar22-09, 07:50 PM
P: 452
1. The problem statement, all variables and given/known data

Let X and Y be continuous random variables having joint probability density function

[tex]f(x,y) = e^{-y}[/tex] if 0 [tex]\leq x \leq y[/tex]

A) Determine the joint cumulative distribution function F(x,y) of X and Y. (Hint: Consider the three cases 1) [tex]x \leq 0[/tex] or [tex]y \leq 0[/tex] 2) 0 < x < y 3) 0 <y < x

B) Let [tex]F_X (x)[/tex] and [tex]F_Y (y)[/tex] be the marginal cumulative distribution functions of X and Y. One can show that [tex]F_X (x) = Lim_{Y \rightarrow \infty} F(x,y)[/tex] and [tex]F_Y (y) = Lim_{X \rightarrow \infty} F(x,y)[/tex]. Use this result to obtain [tex]F_X (x)[/tex] and [tex]F_Y (y)[/tex]
2. Relevant equations



3. The attempt at a solution

Not sure how to start with A).

I know that [tex] F(x,y) = \int^x_{- \infty} \int^y_{- \infty} f(x,y) dy dx[/tex]

Does it mean for the case where x < 0 it would be:

[tex] F(x,y) = \int^0_{- \infty} \int^y_{- \infty} f(x,y) dy dx[/tex] ?
Phys.Org News Partner Science news on Phys.org
Experts defend operational earthquake forecasting, counter critiques
EU urged to convert TV frequencies to mobile broadband
Sierra Nevada freshwater runoff could drop 26 percent by 2100