View Single Post
 I have the same problem again in the following code: Code: gA = 10; M = 1; Ne = 1; If[M >= 1, m = M, m = 0]; For[SNRdB = 0, SNRdB <= 10, SNRdB++, SNR = 10^(SNRdB/10); Print[F1 = \!$$\*UnderoverscriptBox[\(\[Sum]$$, $$r = m$$, $$M$$]$$\*UnderoverscriptBox[\(\[Sum]$$, $$i = 0$$, $$M - r$$]$$\*UnderoverscriptBox[\(\[Sum]$$, $$j = 0$$, $$r + i$$]$$\*UnderoverscriptBox[\(\[Sum]$$, $$k = 0$$, $$j*\((Ne - 1)$$\)] \*SuperscriptBox[$$(\(-1$$)\), $$i + j$$]*Binomial[M, r]* Binomial[M - r, i]*Binomial[r + i, j]* \*SuperscriptBox[$$E$$, FractionBox[$$\(-j$$*SNR\), $$gA$$]]* \*SuperscriptBox[$$( \*FractionBox[\(SNR$$, $$g$$])\), $$k$$]\)\)\)\)]] For[SNRdB = 0, SNRdB <= 10, SNRdB++, SNR = 10^(SNRdB/10); Print[F2 = 1 - \!$$\*UnderoverscriptBox[\(\[Sum]$$, $$r1 = m$$, $$M - 1$$]$$\*UnderoverscriptBox[\(\[Sum]$$, $$i1 = 1$$, $$M - r1$$]$$\*UnderoverscriptBox[\(\[Sum]$$, $$j1 = 1$$, $$r1 + i1$$]$$\*UnderoverscriptBox[\(\[Sum]$$, $$k1 = 0$$, $$j1*\((Ne - 1)$$\)] \*SuperscriptBox[$$(\(-1$$)\), $$i1 + j1$$]*Binomial[M, r1]* Binomial[M - r1, i1]*Binomial[r1 + i1, j1]* \*SuperscriptBox[$$E$$, FractionBox[$$\(-j1$$*SNR\), $$gA$$]]* \*SuperscriptBox[$$( \*FractionBox[\(SNR$$, $$g$$])\), $$k1$$]\)\)\)\)]] 1-1/\[ExponentialE]^(1/10) 1-\[ExponentialE]^-1/10^(9/10) 1-\[ExponentialE]^-1/10^(4/5) 1-\[ExponentialE]^-1/10^(7/10) 1-\[ExponentialE]^-1/10^(3/5) 1-\[ExponentialE]^-1/Sqrt[10] 1-\[ExponentialE]^-1/10^(2/5) 1-\[ExponentialE]^-1/10^(3/10) 1-\[ExponentialE]^-1/10^(1/5) 1-\[ExponentialE]^-1/10^(1/10) 1-1/\[ExponentialE] 1 1 1 1 1 1 1 1 1 1 1 Why is the second part constant, even though it is a dependent on SNR? Regards