View Single Post
latentcorpse
#1
Oct12-09, 08:55 AM
P: 1,439
(i) show that [itex]R_{abcd}+R_{cdab}[/itex]
(ii) In n dimensions the Riemann tensor has [itex]n^4[/itex] components. However, on account of the symmetries
[itex]R_{abc}^d=-R_{bac}^d[/itex]
[itex]R_{[abc]}^d=0[/itex]
[itex]R_{abcd}+-R_{abdc}[/itex]
not all of these components are independent. Show that the number of independent components is [itex]\frac{n^2(n^2-1)}{12}[/itex]

not really sure how to go about this.
i think (i) follows from the 3 properties above but i cant prove it. also i dont understand what [itex]R_{[abc]}^d[/itex] means, in particular the [abc] part. is this a Lie bracket? (i havent covered these yet) so could someone explain what this is about.

thanks.
Phys.Org News Partner Science news on Phys.org
Flapping baby birds give clues to origin of flight
Prions can trigger 'stuck' wine fermentations, researchers find
Socially-assistive robots help kids with autism learn by providing personalized prompts