View Single Post
Jun20-10, 05:15 PM
P: 2
I need help to determine the upper bound of this infinite series.
[tex]\sum_{k=p+1}^{\infty} \frac{1}{k} a^k \ \ \ \ ; a \leq 1[/tex]

The paper I am reading reports the upper bound to be,
[tex]\sum_{k=p+1}^{\infty} \frac{1}{k} a^k \leq \frac{1}{p+1}\sum_{k=p+1}^{\infty} a^k = \frac{1}{p+1} \cdot \frac{a^{p+1}}{1-a}[/tex]

I totally cannot understand how could he factor 1/k coefficient out of the summation and replace it with 1/(p+1). Please point me in the right direction.
Phys.Org News Partner Science news on
Scientists develop 'electronic nose' for rapid detection of C. diff infection
Why plants in the office make us more productive
Tesla Motors dealing as states play factory poker