View Single Post
Jun20-10, 05:15 PM
P: 2
I need help to determine the upper bound of this infinite series.
[tex]\sum_{k=p+1}^{\infty} \frac{1}{k} a^k \ \ \ \ ; a \leq 1[/tex]

The paper I am reading reports the upper bound to be,
[tex]\sum_{k=p+1}^{\infty} \frac{1}{k} a^k \leq \frac{1}{p+1}\sum_{k=p+1}^{\infty} a^k = \frac{1}{p+1} \cdot \frac{a^{p+1}}{1-a}[/tex]

I totally cannot understand how could he factor 1/k coefficient out of the summation and replace it with 1/(p+1). Please point me in the right direction.
Phys.Org News Partner Science news on
An interesting glimpse into how future state-of-the-art electronics might work
Tissue regeneration using anti-inflammatory nanomolecules
C2D2 fighting corrosion