View Single Post
sneaky666
#1
Oct8-10, 03:44 PM
P: 66
consider rolling a die.
S= {1,2,3,4,5,6}
P(s)=1/6 for all s in S
X= number on die so that X(s)=s for all s in S
Y= X^2
compute the cumulative distribution function Fy(y) = P(Y<=y), for all y in the set of real numbers.

My guess
for Y=1 i get
P(-inf<y<=1)=P(Y<=1)-P(Y<-inf)=Fx(1)-Fx(-inf)
= Fx(1)-0
= Fx(1)

Is this all I have to do for Y=1, or do I have to integrate, or is there anything wrong?
Phys.Org News Partner Science news on Phys.org
Physical constant is constant even in strong gravitational fields
Montreal VR headset team turns to crowdfunding for Totem
Researchers study vital 'on/off switches' that control when bacteria turn deadly