View Single Post
Feb10-11, 05:13 PM
P: 40
1. The problem statement, all variables and given/known data

Find the continuous points P and the differentiable points Q of the function [tex]f[/tex] in [tex]{R}^3[/tex], defined as

[tex]f(0,0,0) = 0[/tex]

[tex]f(x,y,z) = \frac{xy(1-\cos{z})-z^3}{x^2+y^2+z^2}, (x,y,z) \ne (0,0,0)[/tex].

2. Relevant equations

3. The attempt at a solution

If you want to look at the limit I'm having trouble with, just skip a few paragraphs. I'm mostly including the rest in case anyone is in the mood to point out flaws in my reasoning.

Differentiating [tex]f[/tex] with respect to x, y and z, respectively (when [tex](x,y,z) \ne (0,0,0)[/tex] will make it apparent that all three partials will contain a denominator of [tex](x^2+y^2+z^2)^2[/tex] and a continuous numerator. Thus, these partials are continuous everywhere except in [tex](0,0,0)[/tex], and it follows that [tex]f[/tex] is differentiable, and consequently, also continuous in all points [tex](x,y,z) \ne (0,0,0)[/tex].

Investigating if [tex]f[/tex] is differentiable at [tex](0,0,0)[/tex], we investigate the limit

[tex]\lim_{(h_1,h_2,h_3) \to (0,0,0)}{\frac{f(h_1,h_2,h_3) - f(0,0,0) - h_1 f_1(0,0,0) - h_2 f_2(0,0,0) - h_3 f_3(0,0,0)}{\sqrt{{h_1}^2 + {h_2}^2 + {h_3}^2}}} = \lim_{(h_1,h_2,h_3) \to (0,0,0)}{\frac{h_1 h_2 (1-\cos{h_3}) - {h_3}^3}{({h_1}^2 + {h_2}^2 + {h_3}^2)^{3/2}}}.[/tex]

Evaluating along the line [tex]x = y = z[/tex], that is, [tex]h_1 = h_2 = h_3[/tex], it is found after a bit of work and one application of l'H˘pital's rule that the limit from the right does not equal the limit from the left, and hence, [tex]f[/tex] is not differentiable in [tex](0,0,0)[/tex].

To prove continuity of [tex]f[/tex], we want to show that [tex]\lim_{(x,y,z) \to (0,0,0)}f(x,y,z) = 0[/tex]. Since I haven't found any good counter-examples to this, I've tried to prove it with the epsilon-delta definition instead, with little luck.

We see that

[tex]|f(x,y,z) - 0| = \left|\frac{xy(1-\cos{z})-z^3}{x^2 + y^2 + z^2}\right| \le \left|\frac{xy(1-\cos{z})-z^3}{z^2}\right|,[/tex]

getting me nowhere.

Trying with spherical coordinates instead, we get

[tex]|f(x,y,z)-0| = \left|\frac{{\rho}^2 {\sin^2 \phi} \cos{\theta} \sin{\theta} (1-\cos{(\rho \cos{\phi})}) - {\rho}^3 \cos^3 {\phi}}{{\rho}^2 \sin^2 {\phi} \cos^2 {\theta} + {\rho}^2 \sin^2 {\phi} \sin^2 {\theta} + {\rho}^2 \cos^2 {\phi}}\right| = \left|\sin^2 {\phi} \cos{\theta} \sin{\theta} (1-\cos{(\rho \cos{\phi})}) - \rho \cos^3 {\phi}\right|.[/tex]

I'm not sure how to proceed. Suggestions?
Phys.Org News Partner Science news on
Experts defend operational earthquake forecasting, counter critiques
EU urged to convert TV frequencies to mobile broadband
Sierra Nevada freshwater runoff could drop 26 percent by 2100