View Single Post
Feb11-11, 04:29 AM
P: 118
1. The problem statement, all variables and given/known data
three functions:
[tex]y=\begin{cases}\arctan \frac{1}{x}\ x\neq0\\ 0\ x=0\end{cases}[/tex]
[tex]y=\frac{1}{x}, y=|x^2-1|[/tex] and what about inflection point?
3. The attempt at a solution
first function is concave on left of 0, convex on right, so from definition it should be inflection point, but its not continuous in this point, a function need to be continuous in this place or not?
in 2, [tex]x=0[/tex] should be inflection point, but its not in the domain, so is there inflection point?
in 3, function is continuous in [tex]x=1[/tex] but not differentiable, is there inflection point or not?
Phys.Org News Partner Science news on
New model helps explain how provisions promote or reduce wildlife disease
Stress can make hard-working mongooses less likely to help in the future
Grammatical habits in written English reveal linguistic features of non-native speakers' languages