View Single Post
May11-11, 12:12 AM
P: 15
1. The problem statement, all variables and given/known data

Continuing with my Apostol efforts. From Section I 2.5:

These exercises go over some of the absolute basics of sets. In 3. I'm given A = {1}, B = {1,2} and asked to decide whether some statements are true or false, proving the ones that are true. Seeing which ones are true is no problem but I have no idea what the proper way to 'prove' them might be. For example, How do I prove that A is a subset of B

3. The attempt at a solution

Assume A is a subset of B, then for any x in A, x is in idea

Another question (6.) gives us A = {1,2} and C = {{1}, {1,2}} and it asks if A is an element of C if so to prove it. I see that it is but once again have no idea how to prove it.
Phys.Org News Partner Science news on
Study links polar vortex chills to melting sea ice
Lab unveil new nano-sized synthetic scaffolding technique
Cool calculations for cold atoms: New theory of universal three-body encounters