View Single Post
BrianMath
#1
Aug7-11, 06:45 AM
P: 26
1. The problem statement, all variables and given/known data
Verify that the inverse of an automorphism is an automorphism.


2. Relevant equations


3. The attempt at a solution

Let [itex]f:G\to G[/itex] be an automorphism. Then, [itex]f(xy)=f(x)f(y)[/itex] [itex]\forall x,y\in G[/itex].
Then, we define the inverse [itex]f^{-1}:G\to G[/itex] by [itex]f^{-1}(f(x)) = f(f^{-1}(x)) = x[/itex] [itex]\;\;\forall x\in G[/itex]. We get [itex]f^{-1}(f(x)f(y))=f^{-1}(f(xy))=xy=f^{-1}(f(x))f^{-1}(f(y))[/itex]. Since [itex]f^{-1}(f(x)f(y))=f^{-1}(f(x))f^{-1}(f(y))[/itex], [itex]f^{-1}[/itex] is an automorphism.

I was watching Harvard's video lectures on Abstract Algebra, and this came up as an exercise in lecture 3. I was wondering if I did this problem correctly.
Phys.Org News Partner Science news on Phys.org
Hoverbike drone project for air transport takes off
Earlier Stone Age artifacts found in Northern Cape of South Africa
Study reveals new characteristics of complex oxide surfaces