Quote by Bill_K
Regardless of what Resnick may or may not have said, the Lorentz transformations in no way depend on the isotropy and homogeneity of spacetime. Nor do they depend on the presence or absence of material objects or EM or gravitational fields. Lorentz invariance is a local property of vacuum. All the equations of physics are local equations and rely on Lorentz invariance at every point for their consistency.

Lorentz transformations are permutations of [itex]\mathbb R^4[/itex] that satisfy a few additional conditions. The presence of matter in the actual universe obviously has no effect on [itex]\mathbb R^4[/itex], and therefore no effect on the Lorentz transformations. But you certainly
do have to make assumptions of homogeneity and isotropy to be able to "derive" them from Einstein's postulates. (You can't actually derive them from Einstein's postulates. You derive them from mathematical statements that can be thought of as expressing aspects of Einstein's postulates mathematically. Are homogeneity and isotropy such aspects, or are they separate assumptions? I think that's actually a matter of taste. Einstein's postulates aren't very precise, so you can interpret them in more than one way).