View Single Post
John232
John232 is offline
#64
Mar9-12, 01:04 AM
P: 249
He could move an entanglement experiment next to the Michealson-Morley experiment and then put an atomic clock on the end of it. Then have a switch linked to both experiments so that it is the same distance to each. When the switch turns on it measures the entangled particle and turns on the Michealson-Morley experiment. The atomic clock would then have a detector to see when the photon reaches it, it then turns on when the other entangled particle changes it's spin from being measured on the other side. The atomic clock stops and read time when the photon reaches the detector. That would be a bunch of trouble just to find that a particle follows d=vt. I thought it should be a given. Or he could just shoot a photon at a piece of material that alters when hit and then time how long it takes it to do it, other way could be a lot of trouble. I thought they already have done this and should be a given. Like when they found the wave properties of light. Why does it take over a hundred years for everyone to know that it was measured to always travel at the same speed? Why would particles travel with anything other than their velocity? Is there some kind of particle velocity I have not heard about? Maybe you could try using my equation to find the velocity in respect to time and get the same answer as the velocity you originally put into it and find that the other equation doesn't. If v=v', then gamma will always cancel so then it doesn't matter if you used the equation for dialated time or not they will reduce to the same equations. Sounds like that should be something you should see wrong with accepted equation.