nightlight
- 187
- 0
That's simply not true: quantum theory is not "different" for QED than for anything else.
Well, than you need some more reading and thinking to do. Let me recall the paper by Haus (who was one of the top Quantum Opticians from lengendary RLE lab at MIT) which I mentioned earlier (http://prola.aps.org/abstract/PRA/v47/i6/p4585_1):
The point there and in what I was saying is not that QM is wrong, but that the remote "projection postulate" (collapse) is simply not telling you enough in the abstract postulate form which only guarantees the existence[/color] of such projection operation (which implements 'an observable yielding one result'). Specifically, it doesn't tell you what kind of operations are involved in its implementation. If, for example an operational imlementation of an "observable" requires plain classical collection of data from multiple locations and rejections or subtractions based on the values obtained from remote locations, than one cannot base claim of nonlocality on such trivially non-local observable (since one can allways add the same convention and their communications channels to any classical model for the raw counts; or generally -- defining extra data filtering or post-processing conventions cannot make the previosuly classically compatible raw counts into result which excludes the 'classical' model).
The typical leap of this kind is in the elementary QM proofs of Bell's QM prediction and the use of abstract "observable", say, [AB] = [Pz] x [Pm], where factor [Pz] measures polarization along z of photon A, and factor [Pm] measures polarization along m on B. The leap then consists in assuming an existence of "ideal" and local QM detectors implementing the observable [AB] (i.e. it will yield the raw and purely local counts reproducing statistically the probabilities and ocrrelations of the eigenvalues of the observable for a given state).
Therefore any such "theorems" of QM incompatibility with clasical theories based on such "predictions" should be understood as valid 'modulo existence of ideal and local detectors for the observables involved'. If one were to postulate such 'existence' then of course, the theorems for the theory "QM+PostulateX" indeed are incompatible with any classical theory (which could, among other things, also mean that PostulateX is too general for our universe and its physical laws).
The abstract QM projection postulate (for the composite system) doesn't tell you, one way or the other, anything about operational aspect of the projection (to one result), except that the operation exists. But the usual leap (in some circles) is that if it doesn't say anything then it means the "measurement" of [AB] values can be done, at least in principle, with purely local counts on 4 "ideal" detectors (otherwise there won't be Bell inequality violation on raw counts).
The QED/QO derivation in [5] makes it plain (assuming the understanding of Gn of [4]) that not only are all the nonlocal vacuum effects subtractions (the "signal" function filtering conventions of QO, built into the standard Gn() definition), included in the prediction of e.g. cos^2(a) "correlation" but one also has to take upfront only the 2 point G2() (cf. eq (4) in [5]) instead of the 4 point G4(), even though there are 4 detectors. That means the additional nonlocal filtering convention was added, which requires removal of the triple and quadruple detections (in addition to accidentals and unpaired singles built into the G2() they used). Some people, based on attributing some wishful meanings to the abstract QM observables, take this convention (of using G2 instead of G4) to mean that the parallel polarizers will give 100% correlated result. As QED derivation [5] shows, they surely will correlate 100%, provided you exclude by hand all those results where they don't agree.
With QED/QO derivation one sees all the additional filtering conventions, resulting from the QED dynamics of photon-atom interactions[/color] (used in deriving Gn() in [4]), which are needed in order to replicate the abstract prediction of elementary QM[/color], such as cos^2(a) "correlation" (which obviously isn't any correlation of any actual local counts at all, not even in principle).
The abstract QM postulates simply lack information about EM field-atom interaction to tell you any of it. They just tell you observable exists. To find out what it means operationally (which you need in order to make any nonlocality claims via Bell inequalities violations; or in the AJP paper, about violation of classical g2>=1), you need dynamics of the specific system. That's what Glauber's QO detection and correlation modelling via QED provides.
In other words the "ideal" detectors, which will yield the "QM predicted" raw counts (which violate the classical inequalities) are necessarily the nonlocal devices[/color] -- to make decisions trigger/no-trigger these "ideal" detectors need extra information about results from remote locations. Thus you can't have the imagined "ideal" detectors that make decisions locally, not even in principle (e.g. how would an "ideal" local detector know its trigger will be the 3rd or 4th trigger, so it better stay quiet, so that its "ideal" counts don't contain doubles & triples? or that its silence will yield unpaired single so it better go off and trigger this time?). Even worse, they may need info from other experiments (e.g. to measures the 'accidental' rates, where the main source is turned off or shifted in the coincidence channel, data accumulated and subtracted from the total "correlations").
The conclusion is then that Quantum Optics/QED don't make a prediction of violation of Bell inequality (or, as explained earlier, of the g2>=1 inequality). There never was (as is well known to the experts) any violation of Bell inequality (or any other classical inequality) in the QO experiments, either. The analysis of the Glauber's QO detection model shows that no violation can exist, not even in principle, using photons as Bell's particles, since no "ideal" local detector for photons could replicate the abstract (and operationally vague) QM predictions.
The "dynamical model of the detection process" you always cite is just the detection process in the case of one specific mode which corresponds to a 1-photon state in Fock space, and which hits ONE detector.
Well, that is where you're missing it. First, the interaction between EM field and cathode atoms is not an abstract QM measurement (and there is no QM projection of "photon") in this treatment. It is plain local QED interaction, so we can skip all the obfuscatory "measurement theory" language.
Now, the detection process being modeled by the Glauber's "correlation" functions Gn() defines very specific kind of dynamical occurence to define what are the counts that the Gn() functions are correlating. These counts at a given 4-volume V(x) are QED processes of local QED absorption of the whole EM mode[/color] by the (ideal Glauber) "detector" GD, which means the full mode energy must be transferred to the GD, leaving no energy in that EM mode (other than vacuum). The energy transfers in QED are always local[/color], which implies in case of a single mode field (such as our |Psi.1> = |T> + |R>) that the entire flux of EM field has to traverse the GD cathode (note that EM field operators in Heisenberrg picture evolve via Maxwell equations, for free fields and for linear optical elements, such as beam splitters, mirrors, polarizers...).
Therefore, your statement about mode " which hits ONE detector" needs to account that for this "ONE" detector to generate a "Glauber count" (since that is what defines the Gn(), used in this paper, e.g. AJP.8) of 1, it has to absorb the whole mode, the full EM energy of |Psi.1> = |T>+|R>. As you can easily verify from the picture of the AJP setup, DT is not a detector configured for such operation of absorbing the full energy of the mode in question, the |Psi.1>. You can't start now splitting universes and invoking your consciousness etc. This is just plain old EM filed propagation. Explain how can DT absorb the whole mode |Psi.1>, its full energy leaving just vacuum after the absorption? (And without it your Glauber counts for AJP.8 will not be generated.)
It can't just grab it from the region R by willpower, be it Everett's or von Neumann's or yours. The only way to absorb it, and thus generate the Glauber's count +1, is by regular EM field propagation (via Maxwell equations) which brings the entire energy of the mode, its T and R regions, onto the cathode of DT. Which means DT has to spread out to cover both paths.
Therefore, the AJP setup doesn't correspond to any detector absorbing the whole incident mode, thus their setup doesn't implement Glauber's G2() in (AJP.8) for the single mode state |Psi.1> = |T> + |R>. Therefore, the count correlations of DT and DR are not described by eq. (AJP.8) since neither DT nor DR implement Glauber's detector (whose counts are counted and correlated by the AJP.8 numerator). Such detector, whose counts are correlated in (AJP.8), counts 1 if and only if it absorbs the full energy of one EM field mode.
The eq (AJP.8) with their detector geometry, applies to the mixed incident state[/color] which is Rho = |T><T| + |R><R|. In that state, for each PDC pulse, the full single mode switches randomly from try to try between the T and R paths, going only one way in each try, and thus the detectors in their configuration can, indeed, perform the counts described by their eq. AJP.8. In that case, they would get g2=0 (which is also identical to the classical prediction for the mixed state), except that their EM state isn't the given mixed state. They're just parroting the earlier erroneous interpretation of that setup for the input state |Psi.1> and to make it "work" as they imagined they had to cheat (as anyone else will have to get g2<1 for raw counts).
What I mean is: If your incoming EM field is a "pure photon state" |1photonleft>, then you can go and do all the locla dynamics with such a state, and after a lot of complicated computations, you will find that your LEFT detector gets into a certain state while the right detector didn't see anything. I'm not going to consider finite efficiencies (yes, yes...), the thing ends up as |detectorleftclick> |norightclick>...
What you're confusing here is the behavior of their detectors DT and DR[/color] (which will be triggering as configured, even for the single mode field |Psi.1> = |T> + |R> EM field) with the applicability of their eq. (AJP.8) to the counts their DT and DR produce[/color]. The detectors DT and DR will trigger, no-one ever said they won't, but the correlations of these triggers are not described by their (AJP.8).
The G2(x1,x2) in numerator of (AJP.8) descibes correlation of the counts of the "full mode absorptions" at locations x1 and x2 (which is more evident in the form AJP.9, although you need to read Glauber to understand what precise dynamical conditions produce these count entering AJP.8: only the full mode absorption, leaving the EM vacuum for the single mode input, make the count 1). But these cannot be their DT and DR since neither of them is for this input state a full mode absorber. And without it they can't apply (AJP,8) to the counts of their detectors. (You need also to recall that in general, the input state determines how the detector has to be placed to perform as an absorber, of any kind, full absorber of AJP.8, or partial absorber which is what they had, for a given state.)
You can do the same for a |1photonright> and then of course we get |noleftclick> |detectorrightclick>. These two time evolutions:
|1photonleft> -> |detectorleftclick> |norightclick>
|1photonright> -> |noleftclick> |detectorrightclick>
are part of the overall time evolution operator U = exp(- i H t)
Now if we have an incoming beam on a beam splitter, this gives to a very good approximation:
|1incoming photon> -> 1/sqrt(2) {|1photonleft> + |1photonright>
You're replaying von Neumann's QM measurement model, which is not what is contained in the Glauber's detections whose counts are used in (AJP.8-11) -- these contain additional specific conditions and constraints for Glauber's counts (counts of full "signal" field mode absorptions). There is no von Numann's measurement here (e.g. photon number isn't preserved in absorptions or emissions) on the EM field. The (AJP.8) is dynamically deduced relation, with precise interpretation given by Glauber in [4], resulting from EM-atom dynamics.
The Glauber's (AJP.8) doesn't apply to the raw counts of AJP experiment DT and DR for the single mode input |Psi.1> = |T> + |R>, since neither DT nor DR as configured can absorb this full single mode. As I mentioned before, you can apply Glaubers detection theory here, by defining properly the two Glauber detectors, GD1 and GD2 which are configured for the requirements of the G(x1,x2) for the this single mode input state (which happens to span two separate regions of space). You simply define GD1 as a detector which combines (via logical OR) the outputs of DT and DR from the experiment, thus treat them as single cathode of odd shape. Thus DG1 can absorb the full mode (giving you Poissonioan count of photo-electrons, as theory already predicts for single photo-cathode).
Now, the second detector DG2 has to be somewhere else, but the x2 can't cover or block the volume x1 used by DG1. In any case, wherever you put it (without blocking DG1), it will absorb vacuum state (left from DG1's action) and its Glauber count will be 0 (GD's don't count anything for vacuum photons). Thus you will get the trivial case g2=0 (which is the same as semi-classical prediction for this configuration of DG1, DG2).
The upshot of this triviality of DG1+DG2 based g2=0 is that it illustrates limitation of the Glauber's definition of Gn() for these (technically) "nonclassical" state -- as Glauber noted in [4], the most trivial property of these functions is that they are, by definition, 0 when the input state has fewer photons (modes) than there are 'Glauber detectors'. Even though he noted this "nonclassicality" for the Fock states, he never tried to assign its operational meaning to the setup like DT and DR of this "anticorrelation" experiment, he knew it doesn't apply here except in the trivial manner of GD1 and GD2 layout (or mixed state Rho layout), in which it shows absolutely nothing non-classical.
It may be puzzling why is it "nonclassical" but it shows nothing genuinly non-classical. This is purely the consequence of the convention Glauber adopted in his definition of Gn. Its technical "nonclassicality" (behavior unlike classical or mathematical correlations) is simply the result of the fact that these Gn() are not really correlation functions of any sequence of local counts at x1 and x2. Namely, their operational definition includes correlation of the counts, followed by the QO subtractions. Formally, this appears in his dropping of the terms from the QED prediction for the actual counts. To quote him ([4] p 85):
He then goes on and drops all the terms "we are not interested in" and gets his Gn()'s and their properties. While they're useful in practice, since they do filter the most characteristic features of the "signal", with all "noise" removed (formally and via QO subtractions), they are not correlations functions of any counts and they have only trivial meaning (and value 0) for the cases of having more Glauber detectors than the incident modes, or generally when we have detectors which capture only partial modes, such as DG and DT interacting with |Psi.1> state in this experiment.
The Mandel, Wolf & Sudarshan's semiclassical detection theory has identical predictions (Poissonian photo-electron counts, proportionality of photo-electron counts to incident intensity, etc) but it lacks Glauber's "signal" function definition for multipoint detections (MWS do subtract local detector's vacuum contributions to its own count). For multipoint detections, they simply use plain product of detection rates of each detector, since these points are at the spacelike distances, which gives you "classical" g2>=1 for this experiment for the actual counts. And that is what you will always measure.
Glauber could have defined the raw count correlations as well, the same product as the MWS semiclassical theory, and derived it from his QED model, but he didn't (the QED unfiltered form is generally not useful for the practical coincidence applications due to great generality and "noise" terms). The correlation functions here would have the unordered operator products instead of normally ordered (as discussed in our earlier thread).
Note that the fact that semiclassical model (or same for any non-Glauberized QED model) uses products of trigger rates doesn't mean the counts can't be correleted. They can be since the local trigger rates are proportional to the local intensities, and these intensities can correlate e.g. as they do in this experiment between G and T + R rates. The correlation in counts is entirely non-mysterious, due to simple EM amplitude correlations.
{ PS: Grangier, who is your countryman and perhaps nearby, is famous for this experiment. Ask him if he still thinks it is genuinly nonclassical (on raw counts g2<1 and with high enough visibility). Also, whether he has some real QED proof of the existence of any nontrivial anticorrelation in this setup (genuinly nonclassical), since you don't seem to know how to do it (I don't know how, either, but I know that).}
Well, than you need some more reading and thinking to do. Let me recall the paper by Haus (who was one of the top Quantum Opticians from lengendary RLE lab at MIT) which I mentioned earlier (http://prola.aps.org/abstract/PRA/v47/i6/p4585_1):
Quantum-nondemolition measurements and the ``collapse of the wave function''
F. X. Kärtner and H. A. Haus
Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
This paper intends to clarify some issues in the theory of quantum measurement by taking advantage of the self-consistent quantum formulation of nonlinear optics. A quantum-nondemolition measurement of the photon number of an optical pulse can be performed with a nonlinear Mach-Zehnder interferometer followed by a balanced detector. The full quantum-mechanical treatment shows that the shortcut in the description of the quantum-mechanical measurement, the so-called ``collapse of the wave function,'' is not needed for a self-consistent interpretation of the measurement process.[/color] Coherence in the density matrix of the signal to be measured is progressively reduced with increasing accuracy of the photon-number determination. The quantum-nondemolition measurement is incorporated in the double-slit experiment and the contrast ratio of the fringes is found to decrease systematically with increasing information on the photon number in one of the two paths. The ``gain'' in the measurement can be made arbitrarily large so that postprocessing of the information can proceed classically.
The point there and in what I was saying is not that QM is wrong, but that the remote "projection postulate" (collapse) is simply not telling you enough in the abstract postulate form which only guarantees the existence[/color] of such projection operation (which implements 'an observable yielding one result'). Specifically, it doesn't tell you what kind of operations are involved in its implementation. If, for example an operational imlementation of an "observable" requires plain classical collection of data from multiple locations and rejections or subtractions based on the values obtained from remote locations, than one cannot base claim of nonlocality on such trivially non-local observable (since one can allways add the same convention and their communications channels to any classical model for the raw counts; or generally -- defining extra data filtering or post-processing conventions cannot make the previosuly classically compatible raw counts into result which excludes the 'classical' model).
The typical leap of this kind is in the elementary QM proofs of Bell's QM prediction and the use of abstract "observable", say, [AB] = [Pz] x [Pm], where factor [Pz] measures polarization along z of photon A, and factor [Pm] measures polarization along m on B. The leap then consists in assuming an existence of "ideal" and local QM detectors implementing the observable [AB] (i.e. it will yield the raw and purely local counts reproducing statistically the probabilities and ocrrelations of the eigenvalues of the observable for a given state).
Therefore any such "theorems" of QM incompatibility with clasical theories based on such "predictions" should be understood as valid 'modulo existence of ideal and local detectors for the observables involved'. If one were to postulate such 'existence' then of course, the theorems for the theory "QM+PostulateX" indeed are incompatible with any classical theory (which could, among other things, also mean that PostulateX is too general for our universe and its physical laws).
The abstract QM projection postulate (for the composite system) doesn't tell you, one way or the other, anything about operational aspect of the projection (to one result), except that the operation exists. But the usual leap (in some circles) is that if it doesn't say anything then it means the "measurement" of [AB] values can be done, at least in principle, with purely local counts on 4 "ideal" detectors (otherwise there won't be Bell inequality violation on raw counts).
The QED/QO derivation in [5] makes it plain (assuming the understanding of Gn of [4]) that not only are all the nonlocal vacuum effects subtractions (the "signal" function filtering conventions of QO, built into the standard Gn() definition), included in the prediction of e.g. cos^2(a) "correlation" but one also has to take upfront only the 2 point G2() (cf. eq (4) in [5]) instead of the 4 point G4(), even though there are 4 detectors. That means the additional nonlocal filtering convention was added, which requires removal of the triple and quadruple detections (in addition to accidentals and unpaired singles built into the G2() they used). Some people, based on attributing some wishful meanings to the abstract QM observables, take this convention (of using G2 instead of G4) to mean that the parallel polarizers will give 100% correlated result. As QED derivation [5] shows, they surely will correlate 100%, provided you exclude by hand all those results where they don't agree.
With QED/QO derivation one sees all the additional filtering conventions, resulting from the QED dynamics of photon-atom interactions[/color] (used in deriving Gn() in [4]), which are needed in order to replicate the abstract prediction of elementary QM[/color], such as cos^2(a) "correlation" (which obviously isn't any correlation of any actual local counts at all, not even in principle).
The abstract QM postulates simply lack information about EM field-atom interaction to tell you any of it. They just tell you observable exists. To find out what it means operationally (which you need in order to make any nonlocality claims via Bell inequalities violations; or in the AJP paper, about violation of classical g2>=1), you need dynamics of the specific system. That's what Glauber's QO detection and correlation modelling via QED provides.
In other words the "ideal" detectors, which will yield the "QM predicted" raw counts (which violate the classical inequalities) are necessarily the nonlocal devices[/color] -- to make decisions trigger/no-trigger these "ideal" detectors need extra information about results from remote locations. Thus you can't have the imagined "ideal" detectors that make decisions locally, not even in principle (e.g. how would an "ideal" local detector know its trigger will be the 3rd or 4th trigger, so it better stay quiet, so that its "ideal" counts don't contain doubles & triples? or that its silence will yield unpaired single so it better go off and trigger this time?). Even worse, they may need info from other experiments (e.g. to measures the 'accidental' rates, where the main source is turned off or shifted in the coincidence channel, data accumulated and subtracted from the total "correlations").
The conclusion is then that Quantum Optics/QED don't make a prediction of violation of Bell inequality (or, as explained earlier, of the g2>=1 inequality). There never was (as is well known to the experts) any violation of Bell inequality (or any other classical inequality) in the QO experiments, either. The analysis of the Glauber's QO detection model shows that no violation can exist, not even in principle, using photons as Bell's particles, since no "ideal" local detector for photons could replicate the abstract (and operationally vague) QM predictions.
The "dynamical model of the detection process" you always cite is just the detection process in the case of one specific mode which corresponds to a 1-photon state in Fock space, and which hits ONE detector.
Well, that is where you're missing it. First, the interaction between EM field and cathode atoms is not an abstract QM measurement (and there is no QM projection of "photon") in this treatment. It is plain local QED interaction, so we can skip all the obfuscatory "measurement theory" language.
Now, the detection process being modeled by the Glauber's "correlation" functions Gn() defines very specific kind of dynamical occurence to define what are the counts that the Gn() functions are correlating. These counts at a given 4-volume V(x) are QED processes of local QED absorption of the whole EM mode[/color] by the (ideal Glauber) "detector" GD, which means the full mode energy must be transferred to the GD, leaving no energy in that EM mode (other than vacuum). The energy transfers in QED are always local[/color], which implies in case of a single mode field (such as our |Psi.1> = |T> + |R>) that the entire flux of EM field has to traverse the GD cathode (note that EM field operators in Heisenberrg picture evolve via Maxwell equations, for free fields and for linear optical elements, such as beam splitters, mirrors, polarizers...).
Therefore, your statement about mode " which hits ONE detector" needs to account that for this "ONE" detector to generate a "Glauber count" (since that is what defines the Gn(), used in this paper, e.g. AJP.8) of 1, it has to absorb the whole mode, the full EM energy of |Psi.1> = |T>+|R>. As you can easily verify from the picture of the AJP setup, DT is not a detector configured for such operation of absorbing the full energy of the mode in question, the |Psi.1>. You can't start now splitting universes and invoking your consciousness etc. This is just plain old EM filed propagation. Explain how can DT absorb the whole mode |Psi.1>, its full energy leaving just vacuum after the absorption? (And without it your Glauber counts for AJP.8 will not be generated.)
It can't just grab it from the region R by willpower, be it Everett's or von Neumann's or yours. The only way to absorb it, and thus generate the Glauber's count +1, is by regular EM field propagation (via Maxwell equations) which brings the entire energy of the mode, its T and R regions, onto the cathode of DT. Which means DT has to spread out to cover both paths.
Therefore, the AJP setup doesn't correspond to any detector absorbing the whole incident mode, thus their setup doesn't implement Glauber's G2() in (AJP.8) for the single mode state |Psi.1> = |T> + |R>. Therefore, the count correlations of DT and DR are not described by eq. (AJP.8) since neither DT nor DR implement Glauber's detector (whose counts are counted and correlated by the AJP.8 numerator). Such detector, whose counts are correlated in (AJP.8), counts 1 if and only if it absorbs the full energy of one EM field mode.
The eq (AJP.8) with their detector geometry, applies to the mixed incident state[/color] which is Rho = |T><T| + |R><R|. In that state, for each PDC pulse, the full single mode switches randomly from try to try between the T and R paths, going only one way in each try, and thus the detectors in their configuration can, indeed, perform the counts described by their eq. AJP.8. In that case, they would get g2=0 (which is also identical to the classical prediction for the mixed state), except that their EM state isn't the given mixed state. They're just parroting the earlier erroneous interpretation of that setup for the input state |Psi.1> and to make it "work" as they imagined they had to cheat (as anyone else will have to get g2<1 for raw counts).
What I mean is: If your incoming EM field is a "pure photon state" |1photonleft>, then you can go and do all the locla dynamics with such a state, and after a lot of complicated computations, you will find that your LEFT detector gets into a certain state while the right detector didn't see anything. I'm not going to consider finite efficiencies (yes, yes...), the thing ends up as |detectorleftclick> |norightclick>...
What you're confusing here is the behavior of their detectors DT and DR[/color] (which will be triggering as configured, even for the single mode field |Psi.1> = |T> + |R> EM field) with the applicability of their eq. (AJP.8) to the counts their DT and DR produce[/color]. The detectors DT and DR will trigger, no-one ever said they won't, but the correlations of these triggers are not described by their (AJP.8).
The G2(x1,x2) in numerator of (AJP.8) descibes correlation of the counts of the "full mode absorptions" at locations x1 and x2 (which is more evident in the form AJP.9, although you need to read Glauber to understand what precise dynamical conditions produce these count entering AJP.8: only the full mode absorption, leaving the EM vacuum for the single mode input, make the count 1). But these cannot be their DT and DR since neither of them is for this input state a full mode absorber. And without it they can't apply (AJP,8) to the counts of their detectors. (You need also to recall that in general, the input state determines how the detector has to be placed to perform as an absorber, of any kind, full absorber of AJP.8, or partial absorber which is what they had, for a given state.)
You can do the same for a |1photonright> and then of course we get |noleftclick> |detectorrightclick>. These two time evolutions:
|1photonleft> -> |detectorleftclick> |norightclick>
|1photonright> -> |noleftclick> |detectorrightclick>
are part of the overall time evolution operator U = exp(- i H t)
Now if we have an incoming beam on a beam splitter, this gives to a very good approximation:
|1incoming photon> -> 1/sqrt(2) {|1photonleft> + |1photonright>
You're replaying von Neumann's QM measurement model, which is not what is contained in the Glauber's detections whose counts are used in (AJP.8-11) -- these contain additional specific conditions and constraints for Glauber's counts (counts of full "signal" field mode absorptions). There is no von Numann's measurement here (e.g. photon number isn't preserved in absorptions or emissions) on the EM field. The (AJP.8) is dynamically deduced relation, with precise interpretation given by Glauber in [4], resulting from EM-atom dynamics.
The Glauber's (AJP.8) doesn't apply to the raw counts of AJP experiment DT and DR for the single mode input |Psi.1> = |T> + |R>, since neither DT nor DR as configured can absorb this full single mode. As I mentioned before, you can apply Glaubers detection theory here, by defining properly the two Glauber detectors, GD1 and GD2 which are configured for the requirements of the G(x1,x2) for the this single mode input state (which happens to span two separate regions of space). You simply define GD1 as a detector which combines (via logical OR) the outputs of DT and DR from the experiment, thus treat them as single cathode of odd shape. Thus DG1 can absorb the full mode (giving you Poissonioan count of photo-electrons, as theory already predicts for single photo-cathode).
Now, the second detector DG2 has to be somewhere else, but the x2 can't cover or block the volume x1 used by DG1. In any case, wherever you put it (without blocking DG1), it will absorb vacuum state (left from DG1's action) and its Glauber count will be 0 (GD's don't count anything for vacuum photons). Thus you will get the trivial case g2=0 (which is the same as semi-classical prediction for this configuration of DG1, DG2).
The upshot of this triviality of DG1+DG2 based g2=0 is that it illustrates limitation of the Glauber's definition of Gn() for these (technically) "nonclassical" state -- as Glauber noted in [4], the most trivial property of these functions is that they are, by definition, 0 when the input state has fewer photons (modes) than there are 'Glauber detectors'. Even though he noted this "nonclassicality" for the Fock states, he never tried to assign its operational meaning to the setup like DT and DR of this "anticorrelation" experiment, he knew it doesn't apply here except in the trivial manner of GD1 and GD2 layout (or mixed state Rho layout), in which it shows absolutely nothing non-classical.
It may be puzzling why is it "nonclassical" but it shows nothing genuinly non-classical. This is purely the consequence of the convention Glauber adopted in his definition of Gn. Its technical "nonclassicality" (behavior unlike classical or mathematical correlations) is simply the result of the fact that these Gn() are not really correlation functions of any sequence of local counts at x1 and x2. Namely, their operational definition includes correlation of the counts, followed by the QO subtractions. Formally, this appears in his dropping of the terms from the QED prediction for the actual counts. To quote him ([4] p 85):
... we obtain for this Un(t,t0) an expression containing n^n terms, which represent all the ways in which n atoms can participate in an n-th order process. Many of these terms, however, have nothing to do with the process we are considering, since we require each atom [his detector] to participate by absorbing a photon once and only once.[/color] Terms involving repetitions of the Hamiltonian for a given atom describe processes other than those we are interested in.
He then goes on and drops all the terms "we are not interested in" and gets his Gn()'s and their properties. While they're useful in practice, since they do filter the most characteristic features of the "signal", with all "noise" removed (formally and via QO subtractions), they are not correlations functions of any counts and they have only trivial meaning (and value 0) for the cases of having more Glauber detectors than the incident modes, or generally when we have detectors which capture only partial modes, such as DG and DT interacting with |Psi.1> state in this experiment.
The Mandel, Wolf & Sudarshan's semiclassical detection theory has identical predictions (Poissonian photo-electron counts, proportionality of photo-electron counts to incident intensity, etc) but it lacks Glauber's "signal" function definition for multipoint detections (MWS do subtract local detector's vacuum contributions to its own count). For multipoint detections, they simply use plain product of detection rates of each detector, since these points are at the spacelike distances, which gives you "classical" g2>=1 for this experiment for the actual counts. And that is what you will always measure.
Glauber could have defined the raw count correlations as well, the same product as the MWS semiclassical theory, and derived it from his QED model, but he didn't (the QED unfiltered form is generally not useful for the practical coincidence applications due to great generality and "noise" terms). The correlation functions here would have the unordered operator products instead of normally ordered (as discussed in our earlier thread).
Note that the fact that semiclassical model (or same for any non-Glauberized QED model) uses products of trigger rates doesn't mean the counts can't be correleted. They can be since the local trigger rates are proportional to the local intensities, and these intensities can correlate e.g. as they do in this experiment between G and T + R rates. The correlation in counts is entirely non-mysterious, due to simple EM amplitude correlations.
{ PS: Grangier, who is your countryman and perhaps nearby, is famous for this experiment. Ask him if he still thinks it is genuinly nonclassical (on raw counts g2<1 and with high enough visibility). Also, whether he has some real QED proof of the existence of any nontrivial anticorrelation in this setup (genuinly nonclassical), since you don't seem to know how to do it (I don't know how, either, but I know that).}
Last edited: