Thread: Virial Theorem
View Single Post
StephenPrivitera
StephenPrivitera is offline
#5
Oct6-03, 04:35 PM
P: 364
Originally posted by Jeebus
For example, out in space, very often a bunch of particles will collapse to form a gravitationally bound system. If the system is roughly in equilibrium so the time averages of kinetic and potential energy are close to their current values, the virial theorem implies that T = -(1/2) V. we know that <T> = -<V>/2.
Does this mean that a protostar which has the initial property T < V/2 will collapse until it reaches equilibrium at T = V/2? Suppose we know the average temperature, mass and density of a protostar. Can we predict what size star will result from the collapse by finding when T = V/2?