View Single Post
StephenPrivitera
#1
Oct17-03, 01:19 PM
P: 364
Considering the problem of finding the area under a parametric curve, I thought,
y=y(t), x=x(t)
A=[inte]ydx=[inte]yx'(t)dt
That result seems straighforward.

I also thought, what if I let the VVF v=<x(t),y(t)> represent the same curve. To find the area, under the curve (I have in the back of my mind the concept of velocity and position), I would solve the integral, r=[inte]vdt.

Should these two results be related? I think they should, but the math shows they aren't. Should the magnitidue of the latter equal the absolute value of the former? Looks like no. Why not?
Phys.Org News Partner Science news on Phys.org
Scientists discover RNA modifications in some unexpected places
Scientists discover tropical tree microbiome in Panama
'Squid skin' metamaterials project yields vivid color display