Register to reply

Symmetric, antisymmetric and parity

by Sacroiliac
Tags: antisymmetric, parity, symmetric
Share this thread:
Sacroiliac
#1
Jan30-04, 03:13 PM
P: 13
Let me see if I can make it clearer.

Problem 5.5 In David Griffiths “Introduction to Quantum Mechanics” says:

Imagine two non interacting particles, each of mass m, in the infinite square well. If one is in the state psin and the other in state psim orthogonal to psin, calculate < (x1 - x2) 2 >, assuming that (a) they are distinguishable particles, (b) they are identical bosons, (c) they are identical fermions.

(a) a2 [1/6 – (1/2pi2)(1/n2 + 1/m2)]

(b) The answer to (a) - (128*a2*m2n2) / (pi4(m2 - n2)4)

But this last term is present only when m,n have opposite parity.

(c) The answer to (a) plus the term added in (b) with the same stipulation as in (b)

What does this mean? It seams to be saying that all three particles would have the same separation unless their states have opposite parity. Is this correct? Bosons and Fermions would have the same separation unless their states have odd parities? I never heard of this before, how does this work?
Phys.Org News Partner Physics news on Phys.org
UCI team is first to capture motion of single molecule in real time
And so they beat on, flagella against the cantilever
Tandem microwave destroys hazmat, disinfects

Register to reply

Related Discussions
Matrix relation of sets. symmetric, antisymmetric,reflexive,transitive Precalculus Mathematics Homework 3
Why is the solution of the schrödinger equation always symmetric or antisymmetric? Quantum Physics 7
Symmetric/Antisymmetric Relations, Set Theory Problem Calculus & Beyond Homework 6
Even parity => symmetric space wave function? Advanced Physics Homework 7
Symmetric, antisymmetric and parity Quantum Physics 2