(Riemann) Integrability under composition of functions


by Mathmos6
Tags: composition, functions, integrability, riemann
Mathmos6
Mathmos6 is offline
#1
Mar25-09, 06:39 AM
P: 82
1. The problem statement, all variables and given/known data
I've been looking at how integrable functions behave under composition, and I know that if f and g are integrable, f(g(x)) is not necessarily integrable, but it -is- necessarily integrable if f is continuous, regardless of whether g is. So I was wondering, what about if g is continuous and f wasn't, rather than f was? Is there an example of a discontinuous integrable f and a continuous integrable g such that f(g(x)) is non-integrable?

I don't want an explicit proof of the answer, but I'd just like to know whether there is or isn't such an example, so I can begin looking for a counterexample or a proof as appropriate, rather than ending up trying to prove something which is false or look for a counterexample for something which is true. My intuition tells me there isn't a counterexample, but I've found relying on intuition in analysis is a very bad idea!

Thanks,

Mathmos6
Phys.Org News Partner Science news on Phys.org
Cougars' diverse diet helped them survive the Pleistocene mass extinction
Cyber risks can cause disruption on scale of 2008 crisis, study says
Mantis shrimp stronger than airplanes
Wretchosoft
Wretchosoft is offline
#2
Mar25-09, 12:58 PM
P: 64
No, there is no counterexample, and the proof is relatively simple (aka don't try too hard.).


Register to reply

Related Discussions
Composition of functions Calculus & Beyond Homework 1
composition of functions Linear & Abstract Algebra 8
Composition of functions Calculus & Beyond Homework 3
Composition of 2 functions Set Theory, Logic, Probability, Statistics 6
Composition and Identity of functions Calculus 3