# Twice continuously differentiable function

by Jonas Rist
Tags: continuously, differentiable, function
 P: 7 Hello again, another problem: given: a function $$f:[0,\infty)\rightarrow\mathbb{R},f\in C^2(\mathbb{R}^+,\mathbb{R})\\$$ The Derivatives $$f,f''\\$$ are bounded. It is to proof that $$\rvert f'(x)\rvert\le\frac{2}{h}\rvert\rvert f\rvert\rvert_{\infty}+\frac{2}{h}\rvert\lvert f''\rvert\rvert_{\infty}\\$$ $$\forall x\ge 0,h>0\\$$ and: $$\rvert\rvert f'\rvert\rvert_{\infty}\le 2(\rvert\rvert f\rvert\rvert_{\infty})^{\frac{1}{2}}(\rvert\rvert f''\rvert\rvert_{\infty})^{\frac{1}{2}}\\$$ I began like this: $$f'(x)=\int_{0}^{x}f''(x)dx\Rightarrow$$ $$\rvert f'(x)\rvert\le\rvert\int_{0}^{x}f''(x)dx\rvert\le\int_{0}^{x}\rvert f''(x)\rvert dx$$ But then already I donīt know how to go on Iīd be glad to get some hints! Thanks Jonas EDIT: Would it make sense to apply the Tayler series here?
 P: 117 What is h ?
 Sci Advisor HW Helper P: 9,396 Don't include x as the variable in your integral and as a limit, it will only confuse you unnecessarily.

 Related Discussions Calculus & Beyond Homework 5 Set Theory, Logic, Probability, Statistics 2 Calculus & Beyond Homework 2 Calculus 29 Calculus 26