# Spacetime Interval

by schwarzschild
Tags: spacetime interval
 P: 15 I have been working through Schutz's A First Course in General Relativity and was a little confused by how he presents the space time interval: $$\Delta \overline{s}^2 = \sum_{\alpha = 0}^{3} \sum_{\beta = 0}^{3} M_{\alpha \beta} (\Delta x^{\alpha})(\Delta x^{\beta})$$ for some numbers $$\left\{M_{\alpha \beta} ; \alpha , \beta = 0,...,3\right\}$$ which may be functions of the relative velocity between the frames. And then says: Note that we can suppose that $$M_{\alpha \beta} = M_{\beta \alpha}$$ for all $$\alpha$$ and $$\beta$$, since only the sum $$M_{\alpha \beta} + M_{\beta \alpha}$$ ever appears when $$\alpha \ne \beta$$ Anyways I'm confused about his "note" - why can we suppose that?
 HW Helper PF Gold P: 1,961 Since Δx1Δx2 and Δx2Δx1 are the same, the only thing that matters is the sum M12 + M21 : $$M_{12} \Delta x^1 \Delta x^2 + M_{21} \Delta x^2 \Delta x^1 = (M_{12} + M_{21})\Delta x^1 \Delta x^2$$ If this sum were, say, 6, then the term in the expansion would be 6Δx1Δx2, and we can just write this as 3Δx1Δx2 + 3Δx2Δx1.
 P: 15 Is the following the correct expansion of: $$\Delta \overline{s}^2 = \sum_{\alpha = 0}^{3} \sum_{\beta = 0}^{3} M_{\alpha \beta} (\Delta x^{\alpha})(\Delta x^{\beta}) = \sum_{\alpha = 0}^{3} (M_{\alpha 0} \Delta x^{\alpha} \Delta x ^{0} + M_{\alpha 1} \Delta x^{\alpha} \Delta x ^{1} + M_{\alpha 2} \Delta x^{\alpha} \Delta x ^{2} M_{\alpha 3} \Delta x^{\alpha} \Delta x ^{3})$$ $$= M_{0 0} \Delta x^{0} \Delta x ^{1} + M_{01} \Delta x^{1} \Delta x^{0} + M_{02} \Delta x^{2} \Delta x^{0} + M_{03} \Delta x^{3} \Delta x^{0} + M_{10} \Delta x^{1} \Delta x^{0} + M_{11} \Delta x^{1} \Delta x^{1} + \cdot \cdot \cdot$$ $$+ M_{13} \Delta x^{1} \Delta x^{3} + M_{20} \Delta x^{2} \Delta x^{0} + \cdot \cdot \cdot + M_{23} \Delta x^{2} \Delta x^{3} + M_{30} \Delta x^{3} \Delta x^{0} + \cdot \cdot \cdot + M_{33} \Delta x^{3} \Delta x^{3}$$ Sorry, but I'm having a little trouble understanding what exactly the summation is.
 HW Helper PF Gold P: 1,961 Spacetime Interval Yes, that's correct. (I think you made a typo in the 00 term.) Notice that the Mab term and the Mba term can always be combined into a single term, and the coefficent of ΔxaΔxb will be Mab + Mba, i.e. only this sum matters. We can always split it up equally between Mab and Mba, and make M a symmetric matrix.
 P: 15 Okay, thanks, I'm pretty sure I understand this now. However, I'm probably going to have more questions as I continue through Schutz's treatment of the spacetime interval. Should I post them here, or make a new thread?
 HW Helper PF Gold P: 1,961 I think it would be ok to post them here.
Emeritus
PF Gold
P: 5,598
 Quote by dx I think it would be ok to post them here.
I would suggest making a new thread if it's a new topic.

 Related Discussions Introductory Physics Homework 1 Introductory Physics Homework 1 Special & General Relativity 17 Special & General Relativity 15 Special & General Relativity 10