Magnetic Field of Magnetic Dipole Moment


by Morto
Tags: dipole, field, magnetic, moment
Morto
Morto is offline
#1
Oct11-08, 10:51 AM
P: 12
I'm seeking some clarification on a topic found in Jackson 'Classical Electrodynamics' Chapter 5. This deals with the magnetic field of a localised current distribution, where the magnetic vector potential is given by
[tex]\vec{A}(\vec{x}) = \frac{\mu_0}{4\pi} \frac{\vec{m}\times\vec{x}}{\left|\vec{x}\right|^3}[/tex]

and the magnetic induction [tex]\vec{B}[/tex] is the curl of this [tex]\vec{B} = \nabla \times \vec{A}[/tex].
I know that the end result should be
[tex]\vec{B}(\vec{x}) = \frac{\mu_0}{4\pi} \left[\frac{3\vec{n}\left(\vec{n}\cdot\vec{m} - \vec{m}}{\left|\vec{x}\right|^3}\right][/tex]
Where [tex]\vec{n}[/tex] is the unit vector in the direction of [tex]\vec{x}[/tex]
But I'm struggling to do this calculation for myself.

I know that
[tex]\vec{B}(\vec{x}) = \frac{\mu_0}{4\pi} \left(\nabla \times \left(\frac{\vec{m}\times\vec{x}}{\left|\vec{x}\right|^3}\right)\right) \\
= \frac{\mu_0}{4\pi}\left(\vec{m}\left(\nabla\cdot\frac{\vec{x}}{\left|\v ec{x}\right|^3}\right) - \frac{\vec{x}}{\left|\vec{x}\right|^3}\left(\nabla\cdot \vec{m}\right)\right)[/tex]

How does Jackson end up at the result quoted?
Phys.Org News Partner Physics news on Phys.org
Information storage for the next generation of plastic computers
Scientists capture ultrafast snapshots of light-driven superconductivity
Progress in the fight against quantum dissipation
clem
clem is offline
#2
Oct11-08, 01:48 PM
Sci Advisor
P: 1,250
Your second term is wrong. It should be
[tex]-({\vec m}\cdot\nabla)\left[\frac{\vec x}{|{\vec x}|^3}\right][/tex].
Derivator
Derivator is offline
#3
Apr4-09, 07:45 AM
P: 144
Hi

I'm new to this forum! Googleing for the questioned problem I found this forum. Having the same problem as the author of this thread, I want to ask if someone has a solution on how Jackson found the formula for [tex]\vec{B}[/tex]?

I tried my luck with the product rule [tex]\nabla\times(\vec{A}\times\vec{B})=(\vec{B}\cdot\nabla)\vec{A}-(\vec{A}\cdot\nabla)\vec{B}+\vec{A}(\nabla\cdot\vec{B})-\vec{B}(\nabla\cdot\vec{A})[/tex] but came to no conclusion.

kind regards,
derivator

(sorry for my english, it's not my mother tongue)

clem
clem is offline
#4
Apr4-09, 04:25 PM
Sci Advisor
P: 1,250

Magnetic Field of Magnetic Dipole Moment


As I said in my post, the curl of the cross product should be
[tex]\vec{B}(\vec{x}) = \frac{\mu_0}{4\pi} \left(\nabla \times \left(\frac{\vec{m}\times\vec{x}}{\left|\vec{x}\right|^3}\right)\right) \\
= \frac{\mu_0}{4\pi}\left(\vec{m}\left(\nabla\cdot\frac{\vec{x}}{\left|\v ec{x}\right|^3}\right) - ({\vec m}\cdot\nabla)\left[\frac{\vec x}{|{\vec x}|^3}\right][/tex].
This follows because m is a constant so only two terms of your four enter.
Given this result, the first term is a delta function is not needed if r>0.
The second term gives the result in the first post if the delta function singularity at the origin is again ignored.
Jackson is a bit obscure on this.
Derivator
Derivator is offline
#5
Apr4-09, 05:14 PM
P: 144
Hi,
thanks for your answer.

Could you get a bit more detailed on how to show that

[tex]- ({\vec m}\cdot\nabla)\left[\frac{\vec x}{|{\vec x}|^3}\right]=\left[\frac{3\vec{n}\left(\vec{n}\cdot\vec{m}\right) - \vec{m}}{\left|\vec{x}\right|^3}\right][/tex]

is correct?
clem
clem is offline
#6
Apr5-09, 10:58 AM
Sci Advisor
P: 1,250
You really need a better textbook.
Sorry I can't seem to find my latex error below. If hyou can read or correct it, it should show you what to do.
- ({\vec m}\cdot\nabla)\left[\frac{\vec x}{|{\vec x}|^3}\right]=
-{\vec x} ({\vec m}\cdot\nabla)\frac{1}{|{\vec x}|^3}
-\frac{1}{|{\vec x}|^3} ({\vec m}\cdot\nabla){\vec x}
clem
clem is offline
#7
Apr5-09, 11:10 AM
Sci Advisor
P: 1,250
The point is that the m.del acts on only one function at a time.
jmwilli25
jmwilli25 is offline
#8
Mar22-11, 03:58 AM
P: 5
[tex]
- (\vec{m}\cdot\nabla)\left[\frac{\vec{x}}{|\vec {x}|^3}\right]=
-{\vec x} ({\vec m}\cdot\nabla)\frac{1}{|{\vec x}|^3}
-\frac{1}{|{\vec x}|^3} ({\vec m}\cdot\nabla){\vec x}
[/tex]
netheril96
netheril96 is offline
#9
Mar22-11, 05:38 AM
P: 193
Quote Quote by Derivator View Post
Hi,
thanks for your answer.

Could you get a bit more detailed on how to show that

[tex]- ({\vec m}\cdot\nabla)\left[\frac{\vec x}{|{\vec x}|^3}\right]=\left[\frac{3\vec{n}\left(\vec{n}\cdot\vec{m}\right) - \vec{m}}{\left|\vec{x}\right|^3}\right][/tex]

is correct?
[tex]\nabla\frac{\vec{r}}{r^{3}}=\left(\nabla\frac{1}{r^{3}}\right)\vec{r}+\ frac{\nabla\vec{r}}{r^{3}}=-\frac{3\vec{r}\vec{r}}{r^{5}}+\frac{\mathbf{I}}{r^{3}}[/tex]

[tex]\vec{m}\cdot\nabla\frac{\vec{r}}{r^{3}}=\vec{m}\cdot\left(-\frac{3\vec{r}\vec{r}}{r^{5}}+\frac{\mathbf{I}}{r^{3}}\right)=-\frac{3(\vec{m}\cdot\vec{r})\vec{r}}{r^{5}}+\frac{\vec{m}}{r^{3}}[/tex]

I is the unit tensor.


Register to reply

Related Discussions
Magnetic dipole in an external magnetic field General Physics 3
why is the electric dipole moment of an atom zero, but the magnetic moment nonzero? Quantum Physics 9
Question about a magnetic dipole in an inhomogeneous magnetic field.Please help ASAP Advanced Physics Homework 3
deriving the energy of a magnetic dipole in a magnetic field Introductory Physics Homework 8
deriving the energy of a magnetic dipole in a magnetic field Classical Physics 1