Register to reply

Max aircraft range - electric powered

by mheslep
Tags: aircraft, electric, powered, range
Share this thread:
mheslep
#1
Jan12-12, 07:21 PM
PF Gold
P: 3,098
I'm trying to come up with some ballpark ranges for RC electric powered aircraft. The literature I find so far on range, like the Breguet range equation, seems focused on mass change from fuel consumption which is not the case in battery powered electric aircraft. So I thought I would start from scratch for my edification and invite sanity checks. McKay's reference, here, provided guidance. Below I've substituted terms convenient for my design.

Fundamentally, the maximum range is some optimal aircraft velocity x time aloft, and time aloft is the total energy carried divided by the rate at which it is used, i.e. power, corrected for the efficiency of the propulsion system:
R = Vopt x (Ebatt/P) x ε
where:
R = maximum range
Ebatt = energy capacity of the battery
ε = propulsion efficiency
P = power
and since force is power / velocity:
R = (Ebatt/Fthrust) ε
for level flight:
Fthrust = Drag
Lift = mg

or

Fthrust = mg (D/L)
where:
m = aircraft mass
g = gravity
L/D = well known lift to drag ratio, or the glide ratio.
then
R = Ebatt x ε x (L/D) / mg
Ebatt = Cbatt x me
where:
Cbatt = battery specific energy
me = mass of battery
let
fbatt = fraction of aircraft mass dedicated to the battery
and
me = fbatt m
then
R = Cbatt x fbatt x m x ε x (L/D) / (mg)
finally:
R = ( Cbatt/g ) x fbatt x ε x (L/D)
The term fbatt x ε x (L/D) is dimensionless. The fundamental range dependent on just carried energy is C/g.

Next up, some numbers.
Phys.Org News Partner Science news on Phys.org
Flapping baby birds give clues to origin of flight
Prions can trigger 'stuck' wine fermentations, researchers find
Socially-assistive robots help kids with autism learn by providing personalized prompts
mheslep
#2
Jan12-12, 07:38 PM
PF Gold
P: 3,098
Li Ion batteries are just short of 1 megajoule per kg, so in SI units C=1e6, g=10, the 'fundamental' range of a Li Ion powered aircraft is C/g = 100 km (62 miles). That applies to any aircraft so powered, of any size and air frame BTW.

Now for the dimensionless bit, the parameters.

Propulsion efficiency:
ε = ηbatt x ηfan x ηemotor

Common efficiencies for the battery and the motor are ~93%. If a prop maxes out at 85%, I'm guessing a duct-ed fan w/ vanes can also hit 93%, making the overall efficiency a convenient ε=0.8

Glide Ratio:
Best powered aircraft glide ratio to my knowledge is the Virgin Atlantic Global flyer. The Flyer achieved an L/D = 37.

Battery mass fraction:
I don't know. Commercial aircraft like a 747 top off with f=0.5. I'm guessing I can stuff f=0.6 in the airframe.

This RC 'Global Flyer' design gives a multiplier of fbatt x ε x (L/D) = 17.8
so Rmax li-ion = 1780 km (1100 miles)
jhae2.718
#3
Jan12-12, 07:43 PM
PF Gold
jhae2.718's Avatar
P: 1,160
I have some literature on electric ducted fans that I think gives some expressions for range and endurance, but I don't have it with me right now.

OmCheeto
#4
Jan12-12, 07:43 PM
PF Gold
OmCheeto's Avatar
P: 1,431
Max aircraft range - electric powered

Buy a blimp covered in flexible photo-voltaic materials.

(sorry. just had to subscribe to my favorite topic. )
mheslep
#5
Jan12-12, 08:01 PM
PF Gold
P: 3,098
I note 1 MJ/kg takes the electric Flyer from New York to Bermuda (774 miles). Lithium Sulfur has demonstrated 1.26 MJ/kg, which would extend Rmax to 1390 miles. Still wont' cross the Atlantic (Newfoundland to Scotland) at 1900 miles
mheslep
#6
Jan12-12, 08:08 PM
PF Gold
P: 3,098
Ah, a Lithium primary battery (no recharge) Li thionyl chloride goes to 1.8MJ => 1980 miles. Primary batteries are often low power density though.
mheslep
#7
Jan12-12, 08:09 PM
PF Gold
P: 3,098
Quote Quote by jhae2.718 View Post
I have some literature on electric ducted fans that I think gives some expressions for range and endurance, but I don't have it with me right now.
Look forward to it.
mheslep
#8
Jan13-12, 09:39 AM
PF Gold
P: 3,098
Interestingly, I see an RC 'model' aircraft (i.e. less than 11 pounds) crossed the Atlantic for the first time in 2003, using 2.2 kg of fuel (Coleman stove fuel).

http://en.wikipedia.org/wiki/The_Spirit_of_Butts_Farm
mheslep
#9
Jan15-12, 03:31 PM
PF Gold
P: 3,098
I see the glide ratio of some modern jets is 20:1. So to build an electric regional jet w legs of a 1000 mi (1700km), battery energy density needs to improve less than 2X, to 1.8 mj/kg: R=180km * .8 * .5 * 20. That is, as soon as an e motor comes along w the same specific power of a gas turbine fan engine (7kw/kg).
jhae2.718
#10
Jan17-12, 10:23 PM
PF Gold
jhae2.718's Avatar
P: 1,160
Quote Quote by mheslep View Post
Look forward to it.
I was mistaken, it doesn't have anything on range. There are some equations for static thrust, power required, though. Let me know if you want those.

The booklet is from 1977, and is "Ducted Fans for Light Aircraft" by R.W. Hovey.
mheslep
#11
Jan18-12, 03:41 PM
PF Gold
P: 3,098
Quote Quote by jhae2.718 View Post
I was mistaken, it doesn't have anything on range. There are some equations for static thrust, power required, though. Let me know if you want those.

The booklet is from 1977, and is "Ducted Fans for Light Aircraft" by R.W. Hovey.
Thanks. That reference led me to another which cites Hovey.

http://books.google.com/books?id=YcA...Hovey.&f=false

By Piolenc and Vwright. They walk through a ducted fan design example which has duct efficiency at 0.9, fan efficiency at 0.9, for a total of 0.81, i.e. less than a prop at its best?


Register to reply

Related Discussions
The Gravity-Powered Aircraft General Discussion 16
R/C Aircraft conversion from glow to electric/solar Aerospace Engineering 1
Workings of Aircraft/Electronics of Aircraft Aerospace Engineering 0
Electric car range General Discussion 32
Rate of Climb Calculations (w/ 4 engine jet powered aircraft) Advanced Physics Homework 2