## Prove that a normed space is not Banach

Hello everyone,
I have a problem and cannot solve it. Could you help? Here it is
We have a normed space and an uncountable Hamel basis of it. Prove that it is not a Banach space.
Should I use Baire theorem? Any suggestions?
 PhysOrg.com science news on PhysOrg.com >> City-life changes blackbird personalities, study shows>> Origins of 'The Hoff' crab revealed (w/ Video)>> Older males make better fathers: Mature male beetles work harder, care less about female infidelity
 Mentor Blog Entries: 8 You're not giving us much information to work with. If you want to show something not Banach, then try to find a Cauchy sequence which does not converge. There are other ways to prove this of course. A lot depends on the space in question.
 You must have a particular space in mind that you didn't specify. An infinite dimensional Banach space necessarily has an uncountable Hamel basis so your result is not general. You need to show that your space is not complete. What is your space?

## Prove that a normed space is not Banach

The exercise does not refer to a particular space. It is just a normed space X with an uncountable Hamel basis. A solution I came up with was to make a finite dimension closed subspace and show using baire that it is X, leading to a contadiction.
If the problem gave us a space for this example which one would that be?
 Mentor Blog Entries: 8 Could you quote the exercise exactly as it was given??

Recognitions: