Register to reply

Young functions

by fderingoz
Tags: functions, young
Share this thread:
fderingoz
#1
Feb23-12, 09:05 AM
P: 12
"In his studies on Fourier Series, W.H.Young has analyzed certain convex functions [itex]\Phi[/itex]:IR[itex]\rightarrow[/itex][itex]\bar{IR}[/itex][itex]^{+}[/itex] which satisfy the conditions : [itex]\Phi[/itex](-x)=[itex]\Phi[/itex](x), [itex]\Phi[/itex](0)=0, and lim[itex]_{x\rightarrow\infty}[/itex][itex]\Phi[/itex](x)=+[itex]\infty[/itex]. Then [itex]\Phi[/itex] is called a Young function.

Several interesting nontrivial properties and ordering relations can be analyzed if a Young function [itex]\Phi[/itex]:IR[itex]\rightarrow[/itex]IR[itex]^{+}[/itex] is continuous. "(rao-ren theory of orlicz spaces 1991)

I think we can say from the definition of young function : Young functions are convex functions on IR and IR is a open convex set and we know also that if a funtion is convex on an open convex set then this function is continuous on that open set, So young functions are continuous.

Why the authors needs to write second paragraph,i.e. -Several interesting nontrivial properties and ordering relations can be analyzed if a Young function [itex]\Phi[/itex]:IR[itex]\rightarrow[/itex]IR[itex]^{+}[/itex] is continuous-?

What is it that i can not see ?
Phys.Org News Partner Science news on Phys.org
Experts defend operational earthquake forecasting, counter critiques
EU urged to convert TV frequencies to mobile broadband
Sierra Nevada freshwater runoff could drop 26 percent by 2100

Register to reply

Related Discussions
Double integration of functions involving bessel functions and cosines/sines Calculus 0
Spherical Vector Wave Functions and Surface Green's Functions Advanced Physics Homework 0
Sum/integral/zeta functions/ Gamma functions Calculus 3
Functions and Realtions : Operation on Functions [Please Answer NOW. I need it today] Precalculus Mathematics Homework 2
Moment Generating Functions and Probability Density Functions Set Theory, Logic, Probability, Statistics 4