Register to reply 
Lectures on Complex Manifolds by P.Candelas 
Share this thread: 
#1
Feb2312, 12:07 PM

P: 28

hi!
i would very much like to have the "Lectures on Comlex Manifolds" by Philip Candelas. It was recommended by an instructor of a course on complex geometry i took some time ago, but sadly its out of print and not in our library. Does anyone has this documents in electronic form? 


#2
Feb2312, 12:44 PM

Mentor
P: 40,947




#3
Feb2312, 01:36 PM

Sci Advisor
P: 1,593

This book is extraordinarily difficult to find. The only copy I've ever seen was illegal, and it was just a chapter or two. I think people need to stop recommending it.
The section on complex geometry in Nakahara's book will get you started, at least. But for more depth on more advanced things, you'll just need to dig through the literature. If anyone has another book to recommend on complex geometry that is actually in print, I'd like to know. 


#4
Feb2312, 01:58 PM

P: 28

Lectures on Complex Manifolds by P.Candelas
sorry, i did not intend to violate any copyright that may exist. i'm actually not even sure if it is a book.



#5
Feb2312, 02:04 PM

Sci Advisor
HW Helper
P: 9,470

what do you want to learn? one dimensional complex manifolds are just riemann surfaces, and two dimensional ones are complex surfaces, of which a special class is algebraic surfaces. there are several good books on those topics.
If you want the basic analytic theorems underlying the subject, the book by R.O. Wells treats the Hodge decomposition, the Kodaira vanishing and embedding theorems. The book of Huybrechts also discusses how to use the hirzebruch riemann roch formula. I myself learned from Kodaira and Morrow. the excellent book of hirzebruch, topological methods in algebraic geometry, is also highly recommended (by me). andre weil has a nice little book on kahler manifolds, especially complex tori, but may be available only in french as varietes kahleriennes. kodaira also has an impressive book on complex manifolds and deformation of complex structures, a subject he basically invented. the book of fritzsche and grauert looks impressive and authoritative. i would not bother with s.s. chern's little book, complex manifolds without potential theory, which i believe is much too condensed to be readable by most people. although one might learn something of value from it, it is probably not worth the $50 or so it costs now. 


#6
Feb2312, 02:30 PM

P: 28

i would like to gain some konwledge about kähler manifolds and especially about calabiyau manifolds. are there any string theory books with good sections about this topics?



#7
Feb2312, 08:22 PM

P: 1,368



#8
Feb2412, 01:57 AM

P: 28

thanks! i think this will be quite helpful!



#9
Feb2412, 03:28 PM

Sci Advisor
HW Helper
P: 9,470

I hope you already know most of that very condensed set of material. This is a long story. One needs to know what a smooth manifold is, differential geometry and Riemannian metrics, differential forms and homology and deRham cohomology theory.
Then the laplace operator associated to a metric is used to define harmonic forms and show under certain conditions how to represent the abstract deRham cohomology elements via harmonic forms, and hence decompose the deRham cohomology according to "type". Then one does the whole subject over again in the complex case, complexifying the tangent and cotangent bundles, with hermitian metrics replacing riemannian ones, and with holomorphic forms contributing a small subclass of the harmonic forms in the decomposition of the cohomology. One obtains a fundamental invariant, the "canonical bundle", the complex line bundle constructed as the determinant of the holomorphic cotangent bundle. The basic examples of these complex manifolds are smooth closed subsets of projective space, i.e. algebraic varieties, so one tries to isolate some special properties that those examples have, one of which is the "kahler" property, that the hermitian metric inherited from a projective embedding defines a natural (1,1) which is "closed". Not all Kahler manifolds in fact are projective but they do all have a good Hodge decomposition for their cohomology which makes them easier to study. This is all basic machinery for studying complex manifolds. Other useful topics include sheaf cohomology, and the relation between line bundles and divisors, and criteria for existence of a projective embedding, i.e. when is a line bundle "very ample"? The relation with some earlier concepts is that a line bundle which gives an embedding has a cohomology (1,1) class which is essentially its kahler class, for the kahler structure inherited from the embedding. Next one begins to look a examples. For dimension one, these are riemann surfaces, divided up by the genus, or more crudely into elliptic, parabolic, and hyperbolic types, according as g =0, g=1, or g >1. Equivalently, the canonical bundle and all its positive tensor powers has no ≠0 holomorphic sections, exactly one section (with no zeroes), or has some positive power which is actually very ample, i.e. has lots of sections. The hodge decomposition here just says that the space of deRham cohomology in degree one, is the direct sum of the spaces of holomorphic and antiholomorphic one forms. There are no holomorphic or antiholomorphic 2 forms, so the one dimensional deRham space in degree 2 is spanned by a single (1,1) form. There is no counterpart in dimension one of a true Calabi Yau manifold,a lthough the closest one is the torus of genus g=1. I.e. it shares with the Calabi Yau manifold the property that the canonical bundle is trivial, but it also has non zero one forms. Usually one considers as Calabi Yau only those more exotic manifolds with trivial canonical bundle and which are also without any ≠0 one forms, i.e. topologically speaking, those which are "simply connected". These exotic objects occur first in complex dimension 2. . There is a simple formula for the canonical bundle of a hypersurface in projective n space, derived from the adjunction formula for how to restrict a meromorphic form to a hypersurface, i.e. how to restrict the canonical bundle of projective space to the hypersurface. The “tautological” line bundle on projective space, induced by the fact that the points of P^n are actually lines, is called O(1) because its chern class is 1. The canonical bundle of P^n is O(n1) the n+1st tensor power of O(1), Then for a smooth hypersurface of degree d in P^n, the canonical bundle is O(dn1). Thus for a plane cubic we get O(0) = O, the trivial canonical bundle. That is why a smooth plane cubic is a torus, i.e. is a Riemann surface of genus one. Products of tori also have trivial canonical bundle as do other complex tori of form C^n/lattice. So these are not really exotic as Calabi Yau manifolds go. But we get some new ones from the adjunction formula as follows: every hypersurface in P^n is simply connected if n > 2, hence by the Hodge decomposition, also has no holomorphic one forms, (whereas complex tori have lots of one forms, also by the Hodge decomp if you like, since topologically they are products of circles). So we will get a new Calabi Yau surface in P^3 if we rig up the formula O(dn1) to come out zero. I.e. we want O(d4) = O, so any smooth quartic surface in 3 space works. Since they are simply connected there are no deRham one forms at all, and by Poincare duality also no 3 forms. In the hodge decomposition of forms according to type (p,q) neither p nor can exceed the complex dimension of the manifold, hence the top cohomology space, which is always one dimensional, i.e. the degree 4 deRham space is spanned by a single harmonic (2,2) form. This leaves only one interesting dimension, the deRham space of (closed mod exact) two forms. Since our surface has trivial canonical bundle, it does have a never zero holomorphic 2form, whicht hen spans the Hodge space of all (2,0) forms. (Dividing any other holomorphic form by it would yield a global holomorphic function, necessarily constant on a compact complex manifold.) Hence the hodge space of (0,2) forms is also one dimensional. Since one can compute the space H^2 to have dimension 22, according to wikipedia, this gives us the whole “hodge diamond”. I.e. the interesting middle row is [ 1 20 1], the top and bottom vertices are 1’s, and the other two rows are zeroes. These are special examples of K3 surfaces, the 2 dimensional analog of Calabi Yau’s. They are really interesting and the subject of many papers. E.g. for most curves of genus g > 2 not only is some power of their canonical bundle very ample, but the canonical bundle itself is very ample. A curve embedded in projective by its canonical bundle, i.e. such that a hyperplane cuts out the zeroes of a holomorphic one form on the curve, is called a canonical curve. Hence a smooth plane quartic is a canonical curve. Now on a quartic surface in space, every hyperplane cuts out a plane quartic, hence a canonical curve. This property of K3 surfaces that hyperplane sections are canonical curves generalizes, and allows one to define the genus of embedded K3 surface as the genus of this canonical curve. (I am a little shaky on this.) There are a few other surfaces that have similar properties to K3 surfaces, such as the quotient of a K3 surface by an involution, or an ”Enriques” surface. Also one can get another surface with similar numerical properties by taking a finite quotient of a 2torus. There are infinitely many families of algebraic K3 surfaces, but interestingly they all fit together into one connected family if we fill in the holes between them by allowing non algebraic kahler examples. This is one good motivation for looking at Kahler surfaces that may not be algebraic. I.e. there is one analytic family of kahler K3 surfaces, on which there are infinitely many distinct families of projective algebraic ones. (I am on shaky ground here too.) Ok, now we go up to three dimensions, and can define a Calabi Yau 3fold as a complex kahler 3 fold with trivial canonical bundle, I,e, having a holomorphic 3 form with no zeroes, and perhaps also having no ≠0 one forms, to rule out 3tori. Then analogously to the case of surfaces, we can produce these by looking for smooth hypersurfaces of degree d in P^n that make the canonical bundle O(dn1) come out trivial. I.e., we want d = n+1, but we also want n = 4, so that a hypersurface is a threefold, so we get d = 5, and we want a smooth quintic in P^4. Now it is true as stated in the notes linked above, that the simplest case is the fermat quintic with equation a sum of fifth powers of all the variables, but I believe that case is too special for some purposes. I.e. a more general example has only a finite number of complex projective lines on it (2875?), and these lines are important for string theory (maybe the lines are among the "strings"), whereas the fermat example I believe has atypically an infinite set of such lines. I am also on shaky ground here. If you are a beginner, as I am, I might suggest you take a look at K3 surfaces, and quintic threefolds to start. I hope this is helpful. I.e. I have grown tired in my old age of reading notes that detail endlessly an enormous formalism without any explanation of what it means. So i have tried to put this subject in some context. 


#10
Feb2412, 11:39 PM

Sci Advisor
HW Helper
P: 9,470

heres a free set of notes from mit more detailed than the ones linked earlier. they cover basic complex manifolds.
http://ocw.mit.edu/courses/mathemati...lecturenotes/ Actually I have to ask myself today as a senior mathematician, why anyone has the nerve to consider such lists of formulas to be teaching tools. at least you understand my bias if you consider the ratio of words to formulas in my note above compared to these tracts. i recommend anything written by Arnaud Beauville. 


#11
Feb2512, 01:29 PM

Sci Advisor
HW Helper
P: 9,470

ah yes, i had forgotten why i myself have seldom thought about harmonic structure on complex manifolds. Although the hodge theorem shows that one can represent deRham cohomology spaces by harmonic forms, and thus one can decompose then into a direct sum according to the type of the harmonic form, there is another consequence for kahler manifolds that returns the statement to one purely about the holomorphic structure. I.e., on a kahler manifold the hodge (p,q) cohomology space, a direct summand of the deRham space of degree p+q, is isomorphic to the dolbeault space H^q(sheaf of holo.pforms). Thus we also get for a kahler manifold an isomorphism from the deRham space H^r to the direct sum of the dolbeault spaces H^q(holo.pforms), summed over p,q ≥ 0 with p+q = r. This allows one also to at least define the analog of the hodge (p,q) spaces in abstract algebraic geometry.



Register to reply 
Related Discussions  
Symplectic but Not Complex Manifolds.  Differential Geometry  3  
Riemannian surfaces as one dimensional complex manifolds  Differential Geometry  156  
Orientability of Complex Manifolds.  Differential Geometry  6  
Candelas and distance  Introductory Physics Homework  1  
Lumens, candelas & equivalent LEDs  General Physics  0 