Register to reply

MSc particle physics revision question - angle of muon from pion decay

Share this thread:
Feb26-12, 04:45 AM
P: 2
I am trying to revise for PhD, going over MSc work. Could anyone help me with this question?

1. The problem statement, all variables and given/known data
A pion traveling at speed β(=v/c) decays into a muon and a neutrino, π→μ + [itex]\nu[/itex]. If the neutrino emerges at 90 to the original pion direction at what angle does the muon come off?
[ Answer: tanθ = ( 1 - m[itex]_{\mu}[/itex][itex]^{2}[/itex] / m[itex]_{\pi}[/itex][itex]^{2}[/itex] ) / ( 2βγ[itex]^{2}[/itex] ) ]

2. Relevant equations
→ using particle physics (pp) units:
E[itex]_{\pi}[/itex] = E[itex]_{\mu}[/itex] + E[itex]_{\nu}[/itex] → energy conservation.
[itex]\bar{p_{\pi}}[/itex] = [itex]\bar{p_{\mu}}[/itex] + [itex]\bar{p_{\nu}}[/itex] → momentum conservation. (3 vector)
βγm[itex]_{\pi}[/itex] = |[itex]\bar{p_{\pi}}[/itex]| (speed of light c not included as pp units)

3. The attempt at a solution
invariant mass squared from decay of the moving pion: m[itex]_{\pi}[/itex][itex]^{2}[/itex] = ( E[itex]_{\mu}[/itex] + E[itex]_{\nu}[/itex] )[itex]^{2}[/itex] - ( [itex]\bar{p_{\mu}}[/itex] + [itex]\bar{p_{\nu}}[/itex] )[itex]^{2}[/itex]

→m[itex]_{\pi}[/itex][itex]^{2}[/itex] = E[itex]_{\mu}[/itex][itex]^{2}[/itex] + E[itex]_{\nu}[/itex][itex]^{2}[/itex] + 2E[itex]_{\mu}[/itex]E[itex]_{\nu}[/itex] - { [itex]\bar{p_{\mu}}[/itex][itex]^{2}[/itex] + [itex]\bar{p_{\nu}}[/itex][itex]^{2}[/itex] + 2[itex]\bar{p_{\mu}}[/itex][itex] \cdot[/itex][itex]\bar{p_{\nu}}[/itex]}

substituting ( m[itex]^{2}[/itex] = E[itex]^{2}[/itex] - p[itex]^{2}[/itex] ) into:
→m[itex]_{\pi}[/itex][itex]^{2}[/itex] = E[itex]_{\mu}[/itex][itex]^{2}[/itex] - p[itex]_{\mu}[/itex][itex]^{2}[/itex] + E[itex]_{\nu}[/itex][itex]^{2}[/itex] - p[itex]_{\nu}[/itex][itex]^{2}[/itex] + 2E[itex]_{\mu}[/itex]E[itex]_{\nu}[/itex] - 2|[itex]\bar{p_{\mu}}[/itex]||[itex]\bar{p_{\nu}}[/itex]|cos ( 90+θ )
→m[itex]_{\pi}[/itex][itex]^{2}[/itex] = m[itex]_{\mu}[/itex][itex]^{2}[/itex] + ( m[itex]_{\nu}[/itex][itex]^{2}[/itex] = 0 ) + 2E[itex]_{\mu}[/itex]E[itex]_{\nu}[/itex] - 2|[itex]\bar{p_{\mu}}[/itex]||[itex]\bar{p_{\nu}}[/itex]|( - sin (θ) ) (the mass of the neutrino is taken as zero here)

also as: cos (90+θ) = cos(90) cos(θ) - sin(90)sin(θ) = - sin (θ)

I got stuck a few lines after this, can anyone who understands this help? Am I on the right track with the methodology?
Phys.Org News Partner Science news on
'Smart material' chin strap harvests energy from chewing
King Richard III died painfully on battlefield
Capturing ancient Maya sites from both a rat's and a 'bat's eye view'
Feb26-12, 01:28 PM
Sci Advisor
HW Helper
PF Gold
P: 11,868
You'll find it more convenient to work with four-vectors. Let ##p_\pi^\alpha = (E_\pi, \vec{p}_\pi)##, ##p_\mu^\alpha = (E_\mu, \vec{p}_\mu)##, and ##p_\nu^\alpha = (E_\nu, \vec{p}_\nu)## be the four-momentum of the pion, muon, and antineutrino respectively, where ##\vec{p}## denotes three-momentum. Conservation of energy and momentum gives you
$$p_\pi^\alpha = p_\mu^\alpha + p_\nu^\alpha.$$ Squaring this yields
$$m_\pi^2 = m_\mu^2 + m_\nu^2 + 2p_\mu^\alpha {p_\nu}_\alpha = m_\mu^2 + m_\nu^2 + 2(E_\mu E_\nu - \vec{p}_\mu \cdot \vec{p}_\nu),$$ which is the same thing you got with a bit more algebra.

Often, the trick to these problems is to rearrange the original equation so that the product of the various four-vectors results in the conveniently placed zero. For example, you know that ##\vec{p}_\pi## and ##\vec{p}_\nu## are perpendicular to each other, so their dot product will vanish. This suggests you try squaring ##p_\pi^\alpha - p_\nu^\alpha = p_\mu^\alpha##.
Feb26-12, 06:52 PM
P: 2
Thank you vela

Register to reply

Related Discussions
Pion decay question High Energy, Nuclear, Particle Physics 5
Three particle pion decay High Energy, Nuclear, Particle Physics 12
Neutral pion decay question. High Energy, Nuclear, Particle Physics 3
Particle physics: calculating the phase space factor for pion to muon decay Advanced Physics Homework 2
Muon decay in particle accelerator Advanced Physics Homework 10