LQC Lambda-CDM model bounce radius...


by Orion1
Tags: bounce, lambdacdm, model, radius
Orion1
Orion1 is offline
#1
Feb22-12, 05:14 PM
Orion1's Avatar
P: 991

These are my equations for the total Universe_mass-energy equivalence based upon the Lambda-CDM model parameters and the Hubble Space Telescope (HST) and WMAP observational parameters and the observable Universe radius in Systeme International units.

I attempted to collapse the Lambda-CDM model parameter dimensions using the maximum LQC bounce density to determine the bounce radius.

Observable Universe radius:
[tex]R_u = 4.399 \cdot 10^{26} \; \text{m}[/tex]
Lambda-CDM stellar Baryon density parameter:
[tex]\Omega_s = 0.005[/tex]
Hubble Space Telescope observable stellar number:
[tex]dN_s = 10^{22}[/tex]
Hubble Space Telescope observable stellar volume:
[tex]dV_s = 3.3871 \cdot 10^{78} \; \text{m}^3 \; \; \; (4 \cdot 10^{30} \; \text{ly}^3)[/tex]
Solar mass:
[tex]M_{\odot} = 1.9891 \cdot 10^{30} \; \text{kg}[/tex]

Planck energy density:
[tex]\boxed{\rho_p = \frac{E_p}{V_p} = \frac{3 c^7}{4 \pi \hbar G^2}}[/tex]

[tex]\boxed{\rho_p = 1.106 \cdot 10^{113} \; \frac{\text{j}}{\text{m}^3}}[/tex]

Universe_mass-energy equivalence total energy:
[tex]\boxed{E_t = \frac{4 \pi c^2 M_{\odot}}{3 \Omega_s} \left( \frac{dN_s}{dV_s} \right) R_u^3}[/tex]

Total amount of energy in the Universe:
[tex]\boxed{E_t = 3.764 \cdot 10^{73} \; \text{j}}[/tex]

Universe total energy density:
[tex]\rho_u = \frac{E_t}{V_u} = \frac{3 E_t}{4 \pi R_u^3} = \frac{M_{\odot} c^2}{\Omega_s} \left( \frac{dN_s}{dV_s} \right)[/tex]

LQC maximum energy density parameter: (ref. 10 p. 73 (5.7))
[tex]\boxed{\Omega_{LQC} = \frac{\rho_{\text{max}}}{\rho_p} = \frac{\hbar G}{2 \gamma^2 \lambda^2 c^7} = 0.41}[/tex]

Universe total energy density equivalent to LQC maximum energy density:
[tex]\rho_u = \rho_{\text{max}}[/tex]

Integration via substitution:
[tex]\frac{3 E_t}{4 \pi R_{LQC}^3} = \Omega_{LQC} \rho_p[/tex]

Universe LQC Lambda-CDM bounce radius:
[tex]\boxed{R_{LQC} = \left( \frac{3 E_t}{4 \pi \Omega_{LQC} \rho_p} \right)^{\frac{1}{3}}}[/tex]

[tex]\boxed{R_{LQC} = 5.829 \cdot 10^{-14} \; \text{m}}[/tex]

Reference:
Planck energy - Wikipedia
Planck length - Wikipedia
Lambda-CDM_model - Wikipedia
Universe - Wikipedia
Observable universe - Wikipedia
Dark matter - Wikipedia
Dark energy - Wikipedia
Friedmann equations - Wikipedia
Total amount of energy in the Universe - Orion1 #13
Loop Quantum Cosmology: A Status Report - Abhay Ashtekar, Parampreet Singh
Phys.Org News Partner Space news on Phys.org
Astronomical forensics uncover planetary disks in Hubble archive
Cosmic illusion revealed: Gravitational lens magnifies supernova
Kazakh satellite to be launched into orbit
tapasbhattach
tapasbhattach is offline
#2
Mar1-12, 12:33 PM
P: 4
May please Check with Maattihias Bartelmann of MPI for Astrophysics Garching Germany.

I have his paper with me on this subject,and found promising like yours,but I have to compare.
Orion1
Orion1 is offline
#3
Mar6-12, 12:27 AM
Orion1's Avatar
P: 991


Universe total energy density equivalent to Planck energy density:
[tex]\rho_u = \rho_{p}[/tex]

Integration via substitution:
[tex]\frac{3 E_t}{4 \pi R_{1}^3} = \rho_p[/tex]

Universe Planck energy density bounce radius:
[tex]\boxed{R_{1} = \left( \frac{3 E_t}{4 \pi \rho_p} \right)^{\frac{1}{3}}}[/tex]

[tex]\boxed{R_{1} = 4.330 \cdot 10^{-14} \; \text{m}}[/tex]

Reference:
Cosmology - Matthias Bartelmann


Register to reply

Related Discussions
A frustum of a right circular cone with height h, lower base radius R, and top radius Calculus & Beyond Homework 1
log(-i mu lambda) Calculus & Beyond Homework 8
Bohr model find orbital radius for electron Introductory Physics Homework 2
lambda-CDM model and geometric units Cosmology 21
Is Hom(Lambda^k(V),Lambda^(k+1)(V)) and element of End(Lambda(V))? Linear & Abstract Algebra 7