Register to reply

LQC Lambda-CDM model bounce radius...

by Orion1
Tags: bounce, lambdacdm, model, radius
Share this thread:
Orion1
#1
Feb22-12, 05:14 PM
Orion1's Avatar
P: 989

These are my equations for the total Universe_mass-energy equivalence based upon the Lambda-CDM model parameters and the Hubble Space Telescope (HST) and WMAP observational parameters and the observable Universe radius in Systeme International units.

I attempted to collapse the Lambda-CDM model parameter dimensions using the maximum LQC bounce density to determine the bounce radius.

Observable Universe radius:
[tex]R_u = 4.399 \cdot 10^{26} \; \text{m}[/tex]
Lambda-CDM stellar Baryon density parameter:
[tex]\Omega_s = 0.005[/tex]
Hubble Space Telescope observable stellar number:
[tex]dN_s = 10^{22}[/tex]
Hubble Space Telescope observable stellar volume:
[tex]dV_s = 3.3871 \cdot 10^{78} \; \text{m}^3 \; \; \; (4 \cdot 10^{30} \; \text{ly}^3)[/tex]
Solar mass:
[tex]M_{\odot} = 1.9891 \cdot 10^{30} \; \text{kg}[/tex]

Planck energy density:
[tex]\boxed{\rho_p = \frac{E_p}{V_p} = \frac{3 c^7}{4 \pi \hbar G^2}}[/tex]

[tex]\boxed{\rho_p = 1.106 \cdot 10^{113} \; \frac{\text{j}}{\text{m}^3}}[/tex]

Universe_mass-energy equivalence total energy:
[tex]\boxed{E_t = \frac{4 \pi c^2 M_{\odot}}{3 \Omega_s} \left( \frac{dN_s}{dV_s} \right) R_u^3}[/tex]

Total amount of energy in the Universe:
[tex]\boxed{E_t = 3.764 \cdot 10^{73} \; \text{j}}[/tex]

Universe total energy density:
[tex]\rho_u = \frac{E_t}{V_u} = \frac{3 E_t}{4 \pi R_u^3} = \frac{M_{\odot} c^2}{\Omega_s} \left( \frac{dN_s}{dV_s} \right)[/tex]

LQC maximum energy density parameter: (ref. 10 p. 73 (5.7))
[tex]\boxed{\Omega_{LQC} = \frac{\rho_{\text{max}}}{\rho_p} = \frac{\hbar G}{2 \gamma^2 \lambda^2 c^7} = 0.41}[/tex]

Universe total energy density equivalent to LQC maximum energy density:
[tex]\rho_u = \rho_{\text{max}}[/tex]

Integration via substitution:
[tex]\frac{3 E_t}{4 \pi R_{LQC}^3} = \Omega_{LQC} \rho_p[/tex]

Universe LQC Lambda-CDM bounce radius:
[tex]\boxed{R_{LQC} = \left( \frac{3 E_t}{4 \pi \Omega_{LQC} \rho_p} \right)^{\frac{1}{3}}}[/tex]

[tex]\boxed{R_{LQC} = 5.829 \cdot 10^{-14} \; \text{m}}[/tex]

Reference:
Planck energy - Wikipedia
Planck length - Wikipedia
Lambda-CDM_model - Wikipedia
Universe - Wikipedia
Observable universe - Wikipedia
Dark matter - Wikipedia
Dark energy - Wikipedia
Friedmann equations - Wikipedia
Total amount of energy in the Universe - Orion1 #13
Loop Quantum Cosmology: A Status Report - Abhay Ashtekar, Parampreet Singh
Phys.Org News Partner Space news on Phys.org
Eclipsing binary stars discovered by high school students
Swirling electrons in the whirlpool galaxy
Curiosity brushes 'Bonanza king' target anticipating fourth red planet rock drilling
tapasbhattach
#2
Mar1-12, 12:33 PM
P: 4
May please Check with Maattihias Bartelmann of MPI for Astrophysics Garching Germany.

I have his paper with me on this subject,and found promising like yours,but I have to compare.
Orion1
#3
Mar6-12, 12:27 AM
Orion1's Avatar
P: 989


Universe total energy density equivalent to Planck energy density:
[tex]\rho_u = \rho_{p}[/tex]

Integration via substitution:
[tex]\frac{3 E_t}{4 \pi R_{1}^3} = \rho_p[/tex]

Universe Planck energy density bounce radius:
[tex]\boxed{R_{1} = \left( \frac{3 E_t}{4 \pi \rho_p} \right)^{\frac{1}{3}}}[/tex]

[tex]\boxed{R_{1} = 4.330 \cdot 10^{-14} \; \text{m}}[/tex]

Reference:
Cosmology - Matthias Bartelmann


Register to reply

Related Discussions
A frustum of a right circular cone with height h, lower base radius R, and top radius Calculus & Beyond Homework 1
Log(-i mu lambda) Calculus & Beyond Homework 8
Bohr model find orbital radius for electron Introductory Physics Homework 2
Lambda-CDM model and geometric units Cosmology 21
Is Hom(Lambda^k(V),Lambda^(k+1)(V)) and element of End(Lambda(V))? Linear & Abstract Algebra 7