Representing dv independent of time?


by Nano-Passion
Tags: independent, representing, time
Nano-Passion
Nano-Passion is offline
#1
Mar23-12, 02:37 AM
P: 1,306
There are four basic equations for constant acceleration

v = v_o +at
v^2 = v_o^2 +2as
and so on

The first velocity is time dependent, while the second velocity relationship is time independent.

In varying acceleration, we have

v = ∫ a(t) dt

Is there any other way we can define velocity so that it is independent of time, akin to the constant acceleration above?
Phys.Org News Partner Physics news on Phys.org
Physicists consider implications of recent revelations about the universe's first light
Vacuum ultraviolet lamp of the future created in Japan
Grasp of SQUIDs dynamics facilitates eavesdropping
emailanmol
emailanmol is offline
#2
Mar23-12, 02:48 AM
P: 297
There are infinite such ways :-)

But most of them aren't useful from practical point of view.

Still I will state one or two for you.

You can write v=ds/dt

v=(ds/dt)*(dv/dv)

[Multiplying by (dv/dv) makes no change]

V=(ds/dv)*(dv/dt)
V=(ds/dv)*a
Since a=dv/dt

On integration this yields your second equation when a is constant.


Another would be

v=(ds/dt)*(da/da)

V=(ds/da)*j

Where j is the jerk, the rate of change of acceleration.

All these equations will give you formula's independent of t. But they will contain other variables which depend on time.


Also
Remember, in steady fluids we define the velocity as a function of space and not time.
Even that picture may help you :-)


Register to reply

Related Discussions
Time independent perturbation Advanced Physics Homework 7
When can the time-independent Schrodinger be used? Quantum Physics 2
A solution to time dependent SE but not Time independent SE?? Quantum Physics 5
time-independent wavefunction Introductory Physics Homework 1