Register to reply

Linear Algebra - Raising a matrix to a power

by snesnerd
Tags: algebra, linear, matrix, power, raising
Share this thread:
snesnerd
#1
Nov24-12, 04:44 PM
P: 24
| x 1 0 |
| 0 x 1 |
| 0 0 x |

I need to raise this matrix to the 50th power. Of course I can not solve this the extremely long way. Here is my attempt at this:

Let A represent the matrix above, and let N represent the following matrix:

| 0 1 0 |
| 0 0 1 |
| 0 0 0 |

Then A = XI + N. Since XI * N = N * XI, we can apply the binomial theorem.

A^50 = sum from k = 0 to 50 of (50 C k)(XI)^(50-k)N^k by the binomial theorem

= (XI)^50 + 50N(XI)^49 + 1225N^(2)(XI)^48 + N^3

Now if you take N^3 you will get 0, and if you take N^2, you get the following:

| 0 0 1 |
| 0 0 0 |
| 0 0 0 |

So we get:

I(X)^50 + 50N(X)^49 + 1225N^2(X)^48 which is,

| X^50 50X^49 1225X^48 |
| 0 X^50 50X^49 |
| 0 0 X^50 |

I think this is right. If my work is right could someone help me make this more thorough? I do not want to miss any details and want to show all my work. Thanks.
Phys.Org News Partner Science news on Phys.org
World's largest solar boat on Greek prehistoric mission
Google searches hold key to future market crashes
Mineral magic? Common mineral capable of making and breaking bonds
Ray Vickson
#2
Nov24-12, 04:48 PM
Sci Advisor
HW Helper
Thanks
P: 4,956
Quote Quote by snesnerd View Post
| x 1 0 |
| 0 x 1 |
| 0 0 x |

I need to raise this matrix to the 50th power. Of course I can not solve this the extremely long way. Here is my attempt at this:

Let A represent the matrix above, and let N represent the following matrix:

| 0 1 0 |
| 0 0 1 |
| 0 0 0 |

Then A = XI + N. Since XI * N = N * XI, we can apply the binomial theorem.

A^50 = sum from k = 0 to 50 of (50 C k)(XI)^(50-k)N^k by the binomial theorem

= (XI)^50 + 50N(XI)^49 + 1225N^(2)(XI)^48 + N^3

Now if you take N^3 you will get 0, and if you take N^2, you get the following:

| 0 0 1 |
| 0 0 0 |
| 0 0 0 |

So we get:

I(X)^50 + 50N(X)^49 + 1225N^2(X)^48 which is,

| X^50 50X^49 1225X^48 |
| 0 X^50 50X^49 |
| 0 0 X^50 |

I think this is right. If my work is right could someone help me make this more thorough? I do not want to miss any details and want to show all my work. Thanks.
Your matrix is a so-called "Jordan Block", and raising it to large powers is a well-solved problem; see, eg., http://en.wikipedia.org/wiki/Jordan_matrix

RGV
Dick
#3
Nov24-12, 05:03 PM
Sci Advisor
HW Helper
Thanks
P: 25,250
Your solution looks just fine to me.


Register to reply

Related Discussions
Matrix Alalysis, Matrix Algebra, Linear Algebra, what's the difference? General Math 1
Linear Algebra- Matrix Linear Transformation Calculus & Beyond Homework 0
Linear algebra problem need help (standard matrix for a linear operator) Calculus & Beyond Homework 7
Linear Algebra (Matrix representation of linear operators) Calculus & Beyond Homework 5
Linear algebra, basis, linear transformation and matrix representation Calculus & Beyond Homework 13