Register to reply

Question about the set of irrationals.

by cragar
Tags: irrationals
Share this thread:
cragar
#1
Dec4-12, 03:10 AM
P: 2,464
Is it possible to have a set that contain all the irrationals that has measure zero.
I dont know that much about measure theory. Or I guess we could just ask what is the measure of the irrationals. I know it is possible to have uncountable sets that have measure zero.
Phys.Org News Partner Science news on Phys.org
Sapphire talk enlivens guesswork over iPhone 6
Geneticists offer clues to better rice, tomato crops
UConn makes 3-D copies of antique instrument parts
ImaLooser
#2
Dec4-12, 03:51 AM
P: 570
Quote Quote by cragar View Post
Is it possible to have a set that contain all the irrationals that has measure zero.
I dont know that much about measure theory. Or I guess we could just ask what is the measure of the irrationals. I know it is possible to have uncountable sets that have measure zero.
The measure of the set of irrational numbers is one.

So the measure of the rationals must be zero.

I seem to recall that the measure of any countable set is zero.
pwsnafu
#3
Dec4-12, 04:03 AM
Sci Advisor
P: 820
You didn't specify which measure you are talking about, so if we use the zero measure, then the answer is yes.

If you are talking about using the Lebesgue measure, the answer is no. Let A be all rationals between 0 and 1, and B be all irrationals between 0, and 1. Then
##m(A) + m(B) = m([0,1]) = 1##
But ##m(A) = 0##, so B has non-zero measure.

Note that if C is any set that contains every irrational between 0 and 1 then ##m(C) \geq m(B)## by monotonicity.

micromass
#4
Dec4-12, 06:26 AM
Mentor
micromass's Avatar
P: 18,036
Question about the set of irrationals.

Quote Quote by ImaLooser View Post
The measure of the set of irrational numbers is one.
What? That's not true, is it?
HallsofIvy
#5
Dec4-12, 07:24 AM
Math
Emeritus
Sci Advisor
Thanks
PF Gold
P: 39,338
I suspect that Imalooser meant the set of all irrational numbers between 0 and 1.
micromass
#6
Dec4-12, 08:20 AM
Mentor
micromass's Avatar
P: 18,036
Quote Quote by HallsofIvy View Post
I suspect that Imalooser meant the set of all irrational numbers between 0 and 1.
That would make sense.
ImaLooser
#7
Dec5-12, 05:18 AM
P: 570
Quote Quote by HallsofIvy View Post
I suspect that Imalooser meant the set of all irrational numbers between 0 and 1.
Sorry, I'm so used to probability measures that I simply assumed that. Probability measures are normed so that the maximum measure is always 1 and the minimum is zero. Duh.
cragar
#8
Dec5-12, 06:13 AM
P: 2,464
do they have sets with different infinite measure?
micromass
#9
Dec5-12, 08:05 AM
Mentor
micromass's Avatar
P: 18,036
Quote Quote by cragar View Post
do they have sets with different infinite measure?
What do you mean with "they"??

Do you mean whether probability spaces have sets of infinite measure? The answer is no: the largest possible measure is 1.
cragar
#10
Dec5-12, 06:44 PM
P: 2,464
I guess I mean in ZFC are their sets that have infinite measure.
But I guess you said they dont
micromass
#11
Dec5-12, 06:50 PM
Mentor
micromass's Avatar
P: 18,036
Quote Quote by cragar View Post
I guess I mean in ZFC are their sets that have infinite measure.
First you need to specify what you mean with "measure". Which measure are you talking about? If you're talking about Lebesgue measure on [itex]\mathbb{R}[/itex] (which is basically the rigorous version of length), then there are sets of infinite measure. The set [itex]\mathbb{R}[/itex] itself has infinite measure.

But I guess you said they dont
I didn't say that. I said that in a probability space (that is when you work with a probability measure), then all sets have finite measure by definition. But when not working with a probability measure, then there might be sets of infinite measure.
cragar
#12
Dec5-12, 06:57 PM
P: 2,464
ok thanks for your response. Are their sets that have larger Lebesgue measure
than the set of reals.
micromass
#13
Dec5-12, 07:15 PM
Mentor
micromass's Avatar
P: 18,036
Quote Quote by cragar View Post
ok thanks for your response. Are their sets that have larger Lebesgue measure
than the set of reals.
No, since they already have infinite measure.

In measure theory, there is only one kind of infinity. There is not an entire class of infinities like the infinites of Cantor.
ImaLooser
#14
Dec5-12, 11:14 PM
P: 570
Quote Quote by cragar View Post
ok thanks for your response. Are their sets that have larger Lebesgue measure
than the set of reals.
Are you thinking of Cantor cardinalities? If so, the answer is yes. You can take the power set of any set, and the power set will have higher cardinality.
pwsnafu
#15
Dec6-12, 12:23 AM
Sci Advisor
P: 820
Quote Quote by ImaLooser View Post
Are you thinking of Cantor cardinalities? If so, the answer is yes. You can take the power set of any set, and the power set will have higher cardinality.
cragar explicitly asked about the Lebesgue measure, not cardinality.

To further what micromass said, the Lebesgue measure is a specific measure defined on certain subsets of ℝ. Therefore there can't be a Lebesgue measurable set that has measure larger than ##m(\mathbb{R})##.


Register to reply

Related Discussions
Need help, Integration of irrationals. Calculus 11
A question on irrationals. Calculus & Beyond Homework 12
The product of all irrationals Linear & Abstract Algebra 2
Irrationals - e,pi,phi General Physics 114
Prove that sqrt2 + sqrt6 is irrational General Math 9