
#1
Dec512, 08:00 AM

P: 132

Suppose I have a vector V and I want to compute for the line integral from point (1,1,0) to point (2,2,0) and I take the path of the least distance (one that traces the identity function).
The line integral is of the form: [tex] \int _a ^b \vec{V} \cdot d\vec{l} [/tex] Where: [tex] x=y, \ d\vec{l} =dx \hat{x} + dx \hat{y} [/tex] Thus the integral can be computed purely in terms of x (can also be y), which looks something like this: [tex] \int _a ^b V(x)dx [/tex] What I don't exactly understand is why is it okay to use the limits like this: [tex] \int _1 ^2 V(x)dx [/tex] Why can we use the limits from 1 to 2 if we express the line integral in terms purely of x. I have a very vague idea of why it is, but I'd rather take it from people who actually know this to explain this to me. Thanks. 



#2
Dec512, 06:30 PM

P: 784

If I understand you correctly, the function you end up integrating is only in terms of ##x##, and therefore you don't need to parametrize it (or you can look at it by saying you are using ##x## as your parameter). Either way, because your function is dependent only on ##x##, all you have to do is integrate along the xaxis, which is from 1 to 2.




#3
Dec712, 06:03 AM

P: 132

Actually, I've found out that to 'parametrize' the variables into x=t, y=t is a more comforting method to do it. At least intuitively, I see it as tracing the path of integration when we set the x and y variables into that parametric equation.
Edit: Yes, I didn't see it, but I was using x as the parameter. Thanks. 


Register to reply 
Related Discussions  
Line integral question  Calculus & Beyond Homework  7  
Line integral Question  Calculus & Beyond Homework  5  
Line Integral Question (Vertical line issues)  Calculus & Beyond Homework  1  
line integralhow to do this question?  Calculus & Beyond Homework  1  
line integral question  Introductory Physics Homework  4 