Register to reply

Dodgy step in the Far field approximation

by Loro
Tags: approximation, dodgy, field, step
Share this thread:
Loro
#1
Dec16-12, 03:36 PM
P: 61
The Fresnel diffraction integral is:

[itex] A(x_0 , y_0 ) = \frac{i e^{-ikz}}{λz} \int \int dx dy A( x , y ) e^{\frac{-ik}{2z} [(x - x_0)^2 + (y - y_0)^2]} [/itex]

When we want to obtain the Fraunhofer diffraction integral from here, we need to somehow convert it to:

[itex] A(x_0 , y_0 ) = \frac{i e^{-ikz}}{λz} \int \int dx dy A( x , y ) e^{\frac{+ik}{z} [x x_0 + y y_0]} [/itex]

So I thought we should do it as follows:

[itex] \frac{-ik}{2z} [(x - x_0)^2 + (y - y_0)^2] = \frac{-ik}{2z} [x^2 + x_0^2 + y^2 + y_0^2 - 2x x_0 - 2y y_0 ] [/itex]

And then it seems that we should neglect: [itex] x^2 + x_0^2 + y^2 + y_0^2 [/itex] since they're all much smaller than z.
Then we get the correct solution.

But I don't see why we could do that, and leave out the [itex] - 2x x_0 - 2y y_0 [/itex]. After all they are of the same order... Please help!
Phys.Org News Partner Physics news on Phys.org
Engineers develop new sensor to detect tiny individual nanoparticles
Tiny particles have big potential in debate over nuclear proliferation
Ray tracing and beyond
sam_bell
#2
Dec16-12, 10:43 PM
P: 67
There might be an assumption that the aperture is small compared to the image space (x0,y0). Considering this is a far-field approximation, that tends to make sense.
Loro
#3
Dec17-12, 06:10 AM
P: 61
Thanks,

It does, but then we couldn't neglect [itex] x_0^2 + y_0^2 [/itex]

mfb
#4
Dec17-12, 09:27 AM
Mentor
P: 11,928
Dodgy step in the Far field approximation

Those terms do not depend on the integration variables, it is possible to pull them out of the integral. They give a prefactor, which might be irrelevant, or accounted for in some other way.
Loro
#5
Dec17-12, 11:57 AM
P: 61
They're just a part of a phase! Got it. Thanks :)
Loro
#6
Dec17-12, 05:06 PM
P: 61
Hold on, but wouldn't that mean that Fraunhofer approximation works best away from the optical axis - where we're allowed to say: [itex] x_0 , y_0 >> x , y [/itex] ? (I don't think that's the case)


Register to reply

Related Discussions
The molecular field approximation Atomic, Solid State, Comp. Physics 2
Jefimenko B-field approximation Advanced Physics Homework 5
Dodgy Dialler Computing & Technology 2
The weak field approximation Special & General Relativity 3
Dodgy trig question Precalculus Mathematics Homework 12