Register to reply

Explicit solution. Properties of vector norms

by james1234
Tags: explicit, norms, properties, solution, vector
Share this thread:
Dec24-12, 11:02 PM
P: 18
I have an equation (constraint) which I wish to solve explicitly in terms of gd (or more precisely a scaling factor of the vector gd) but I am unsure how to manipulate the equation

σi(G) = |uiHgd|-1

Background: (please feel free to skips this. Much of this inforomation is I'm sure irrelevant):

Looking at the above equation, gd defines the maximum disturbance acting on a reduced order model of my system (G).

Here σ is a vector of the maximum singular values of the system (for those not familiar with singular values of transfer function matrices one might think of a plot of the singular values as simply the bode plot of a multivariable system which accounts for interaction between the respective channels (off diagonal terms))

G is my scaled system. In this instance G is simply a 4x4 transfer function matrix (4 inputs / 4 outputs)

uiH is the hermitian transpose (conjugate transpose) of the i'th column of the matrix U (where U has been obtained from the singular value decomposition G = UƩVH)

Finally, just to make clear the form of the 'disturbance'. gd is simply a column of the TF matrix Gd (corresponds to a single disturbance ~ input). I.e. while G is a 4x4 TF matrix which defines the magnitude and phase of the system between the outputs and control inputs of the system. Gd is the magnitude and phase between these same outputs and several disturbance inputs (perturbations to particular states) and has the same dimension as G.

Attempt at a solution:

As the system 'G' has already been scaled (the maximum input and output vector of the TF matrix have a euclidean norm of 1). I would now like to obtain a suitable scaling factor for the disturbance Gd which satisfies the above constraint

What I know ~
The scaled matrix Gd is equal to De-1*Gdunscaled*Dd, where De and Dd are the diagonal matrices used to scale Gdunscaled
the elements of De are known
The singular values of G, (σi(G)), are known
ui[SUP]H is also known

Hence re-writting the above constraint I therefore have

σi(G) = |uiHDe-1gdDdi|-1

where Dd_i represents the element corresponding to the ith column of Gd and is the only unknown

What I would like to obtain..

σi(G) = |uiHDe-1gdDdi|-1

i(G)+1) = |uiH||De-1||gd||Ddi|

|gd|-1|De-1|-1|uiH|-1i(G)+1) = |Ddi|=di

Looking at the properties of the vector norm, I gather that the simple manipulation I have performed isnt pheasible and that the solution will not satisfy the initial constraint.

If anyone can suggest a (simple!! :)) approach for re-arranging the equation (keeping in mind that gd and ui are vectors ~ ui is a vector of complex numbers and gd is a vector of proper rational functions of j*omega) I would be most grateful. I am unaware of any method for manipulating the equation to obtain a simple solution for di.

Phys.Org News Partner Science news on
Scientists develop 'electronic nose' for rapid detection of C. diff infection
Why plants in the office make us more productive
Tesla Motors dealing as states play factory poker
Dec25-12, 02:42 AM
P: 18
Finally, resolved Thanks to all who took a look.
I wanted to delete the post or mark it as solved to push it further down the 'list'. I dont appear to able to do either..


Register to reply

Related Discussions
Is it possible to get an explicit solution for this? General Math 4
Implicit and explicit solution for a given initial-value problem Calculus & Beyond Homework 4
Vector norms Calculus & Beyond Homework 13
Vector Norms Linear & Abstract Algebra 0
Explicit solution of heat/diffusion equation Differential Equations 3