# Change of variable in integral of product of exponential and gaussian functions

by galuoises
Tags: exponential, functions, gaussian, integral, product, variable
 P: 8 I have the integral $\int_{-\infty}^{\infty}dx \int_{-\infty}^{\infty}dy e^{-\xi \vert x-y\vert}e^{-x^2}e^{-y^2}$ where $\xi$ is a constant. I would like to transform by some change of variables in the form $\int_{-\infty}^{\infty}dx F(x) \int_{-\infty}^{\infty}dy G(y)$ the problem is that due to absolute value in the integral one must take in account where x is greater or less than y, can someone help me, please?
 HW Helper P: 2,080 First observe that $e^{-\xi \vert x-y\vert}e^{-x^2}e^{-y^2}=e^{-\xi \vert x-y\vert}e^{-(x-y)^2/2}e^{-(x+y)^2/2}$ Then you can either change variables such as u=(x+y)/sqrt(2) v=(x-y)/sqrt(2) or break into two regions xy
 P: 712 Hi ! the clolsed form of the integral involves a special function (erf). Attached Thumbnails
P: 8

## Change of variable in integral of product of exponential and gaussian functions

Nice trick! Thank you so much!

 Related Discussions Calculus & Beyond Homework 1 Set Theory, Logic, Probability, Statistics 4 Set Theory, Logic, Probability, Statistics 3 Calculus & Beyond Homework 2 Calculus 2