# How can Simple Harmonic Motion have angular frequency?

by InvalidID
Tags: angular, frequency, harmonic, motion, simple
 P: 77 Derived it! $$TE={ KE }+PE\quad and\quad TE={ KE }_{ max }={ PE }_{ max }\\ \\ { KE }_{ max }=KE+PE\\ \frac { 1 }{ 2 } m{ { v }_{ max } }^{ 2 }=\frac { 1 }{ 2 } m{ { v } }^{ 2 }+\frac { 1 }{ 2 } k{ x }^{ 2 }\\ m{ { v }_{ max } }^{ 2 }=m{ { v } }^{ 2 }+k{ x }^{ 2 }\\ k{ x }^{ 2 }=m{ { v }_{ max } }^{ 2 }-m{ { v } }^{ 2 }\\ { x }^{ 2 }=\frac { m }{ k } ({ { v }_{ max } }^{ 2 }-{ { v } }^{ 2 })\\ { x }^{ 2 }={ ω }^{ -2 }({ { v }_{ max } }^{ 2 }-{ { v } }^{ 2 })\\ x=\pm \sqrt { { ω }^{ -2 }({ { v }_{ max } }^{ 2 }-{ { v } }^{ 2 }) } \\ x=\pm \frac { \sqrt { { { v }_{ max } }^{ 2 }-{ { v } }^{ 2 } } }{ { ω } }$$
 PF Patron Sci Advisor Thanks P: 3,945 Nice!
 P: 77 $$F(t)=F_{ 0 }sin(ωt)$$ Is there a reason why the driving oscillator in forced simple harmonic motion doesn't have a phase constant?
 PF Patron Sci Advisor P: 10,020 It would only be an added complication.

 Related Discussions Engineering, Comp Sci, & Technology Homework 1 General Physics 1 Introductory Physics Homework 1 Introductory Physics Homework 2 Introductory Physics Homework 3