
#1
Oct2605, 01:00 PM

P: 1

1. Basically, we have coaxial cable with an inner wire of radius a,
perfectly conducting, straight and infinitely long, with radius a, surrounded by an outer hollow cylinder, also made from perfectly conducting material, having inner radius b and outer radius c. The hollow cylinder functions as a return wire, and is coaxial with the inner wire. If the space between the wires is air or vacuum, the electric field between the inner and return wires is shown to be E = (Q/L)*(1/2*pi*e*p) where Q/L is the charge per unit length and the cylindrical distance between the wires. Suppose the ~E field cannot be allowed to reach values above the value it reaches in the middle of the arrangement, where p = (a+b)/2 2 . This can be achieved by shielding the inner cable with a dielectric of permittivity e. a) What is the minimum value of e and the minimum thickness of dielectric coating that will ensure that the field is everywhere below its maximal value? b) What is the capacitance per unit length of the resulting arrangement. I'm not sure how to do the first part of the problem, I think I would sub in my p = a+b/2 into my first equation, but I'm not sure what to do from there. Any help would be highly appreciated. 



#2
Oct2705, 09:52 PM

Sci Advisor
HW Helper
P: 6,561

[tex]\int E\cdot dA = \frac{q}{\epsilon_0}[/tex] from p=a to p = a+t. So work out the expression for E at p=a+t. The value of E from p=a+t decreases as 1/p. AM 


Register to reply 
Related Discussions  
Dielectric with a parallelplate capacitor finding minimum area  Introductory Physics Homework  9  
Minimum Thickness of a film with wavelength and index of refraction.  Introductory Physics Homework  1  
Cyber forum of Dielectric Phenomena or of Dielectric and Electrical Material?  General Physics  0  
Multilayer thickness  Materials & Chemical Engineering  4 