## rod released on a hinge

1. The problem statement, all variables and given/known data

A massless rod length L has a small mass m attached to the center and another mass m attached at one end. On the opposite end, the rod is hinged to a frictionless hinge. The rod is released from rest at a horizontal position and swings down. What is the angular velocity as it swings through its lowest (vertical) point? Solve in terms of g and L.

2. Relevant equations

use moment of inertia, energy conservation

3. The attempt at a solution

I determined the total moment of inertia of the two masses to be (5/4)mL^2. I know that initial potential energy is 2mgL (setting bottom point of swing as zero). At the bottom, the mass in the middle has PE mgL, the system has KEr of (.5)Iw^2, and both masses have a translational kinetic energy. All of this must sum to the intial 2mgL? I think I am just missing a step in the algebra.

 PhysOrg.com science news on PhysOrg.com >> Front-row seats to climate change>> Attacking MRSA with metals from antibacterial clays>> New formula invented for microscope viewing, substitutes for federally controlled drug
 Mentor Blog Entries: 1 The position of the mass in the middle is L/2 from one end, not L (redo your PE terms). Also, you can treat the system as being in pure rotation about the hinge.